CMPE 493
INTRODUCTION TO
INFORMATION RETRIEVAL

Probabilistic IR and
Language Modeling

Arzucan Özgür

Department of Computer Engineering, Boğaziçi University
July 15, 2011
Probabilistic IR
Probabilistic Approach to Retrieval

- Probability theory provides a principled foundation for such reasoning under uncertainty
- Probabilistic models exploit this foundation to estimate how likely it is that a document is relevant to a query
Probabilistic IR Models at a Glance

- Classical probabilistic retrieval model
 - Probability ranking principle
 - Binary Independence Model, BestMatch25 (Okapi)
- Bayesian networks for text retrieval
- Language model approach to IR
 - Important recent work, competitive performance

Probabilistic methods are one of the oldest but also one of the currently hottest topics in IR
Basic Probability Theory

- For events A and B
 - Joint probability \(P(A, B) \) of both events occurring
 - Conditional probability \(P(A \mid B) \) of event A occurring given that event B has occurred
- **Chain rule** gives fundamental relationship between joint and conditional probabilities:
 \[
P(A, B) = P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)
 \]
- Similarly for the complement of an event:
 \[
P(\overline{A})
 \]
 \[
P(\overline{A}, B) = P(B \mid \overline{A})P(\overline{A})
 \]
- **Partition rule**: if B can be divided into an exhaustive set of disjoint subcases, then \(P(B) \) is the sum of the probabilities of the subcases.
A special case of this rule gives:
\[
P(B) = P(A, B) + P(\overline{A}, B)
\]
Bayes’ Rule for inverting conditional probabilities:

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \left[\frac{P(B|A)}{\sum_{X \in \{A, \overline{A}\}} P(B|X)P(X)} \right] P(A)
\]

Can be thought of as a way of updating probabilities:

- Start off with prior probability \(P(A) \) (initial estimate of how likely event A is in the absence of any other information)
- Derive a posterior probability \(P(A|B) \) after having seen the evidence \(B \), based on the likelihood of \(B \) occurring in the two cases that \(A \) does or does not hold

Odds:

\[
O(A) = \frac{P(A)}{P(\overline{A})} = \frac{P(A)}{1 - P(A)}
\]
Probability Ranking Principle (PRP)

- **PRP in brief**
 - If the retrieved documents (w.r.t a query) are ranked decreasingly on their probability of relevance, then the effectiveness of the system will be the best that is obtainable.

- **PRP in full**
 - If [the IR] system’s response to each [query] is a ranking of the documents [...] in order of decreasing probability of relevance to the [query], *where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose*, the overall effectiveness of the system to its user will be the best *that is obtainable on the basis of those data*.
Probability Ranking Principle

Let \(x \) be a document in the collection. Let \(R \) represent relevance of a document w.r.t. given (fixed) query and let \(NR \) represent non-relevance.

Need to find \(p(R|x) \) - probability that a document \(x \) is relevant.

\[
p(R | x) = \frac{p(x | R)p(R)}{p(x)}
\]

\(p(R), p(NR) \) - prior probability of retrieving a (non) relevant document

\[
p(NR | x) = \frac{p(x | NR)p(NR)}{p(x)}
\]

\(p(R | x) + p(NR | x) = 1 \)

\(p(x|R), p(x|NR) \) - probability that if a relevant (non-relevant) document is retrieved, it is \(x \).
Binary Independence Model

- Traditionally used in conjunction with PRP
- **“Binary” = Boolean**: documents are represented as binary incidence vectors of terms:
 \[
 \vec{x} = (x_1, \ldots, x_n)
 \]
 \[x_i = 1 \text{ iff term } i \text{ is present in document } x.\]
- **“Independence”**: terms occur in documents independently
- Different documents can be modeled as same vector
Binary Independence Model

- **Queries:** binary term incidence vectors
- **Given query** \(q \),
 - for each document \(d \) need to compute \(p(R|q,d) \).
 - replace with computing \(p(R|q,x) \) where \(x \) is binary term incidence vector representing \(d \)
- Interested only in ranking
- **Will use odds and Bayes’ Rule:**

\[
O(R|q,\tilde{x}) = \frac{p(R|q,\tilde{x})}{p(NR|q,\tilde{x})} = \frac{\frac{p(R|q)p(\tilde{x}|R,q)}{p(\tilde{x}|q)}}{\frac{p(\tilde{x}|q)}{p(NR|q)p(\tilde{x}|NR,q)}} = \frac{p(R|q)p(\tilde{x}|R,q)}{p(NR|q)p(\tilde{x}|NR,q)}
\]
Binary Independence Model

\[O(R \mid q, \bar{x}) = \frac{p(R \mid q, \bar{x})}{p(NR \mid q, \bar{x})} = \frac{p(R \mid q)}{p(NR \mid q)} \cdot \frac{p(\bar{x} \mid R, q)}{p(\bar{x} \mid NR, q)} \]

- Using **Independence** Assumption:

\[\frac{p(\bar{x} \mid R, q)}{p(\bar{x} \mid NR, q)} = \prod_{i=1}^{n} \frac{p(x_i \mid R, q)}{p(x_i \mid NR, q)} \]

- So: \(O(R \mid q, d) = O(R \mid q) \cdot \prod_{i=1}^{n} \frac{p(x_i \mid R, q)}{p(x_i \mid NR, q)} \)

Constant for a given query

Needs estimation
Binary Independence Model

\[O(R \mid q, d) = O(R \mid q) \cdot \prod_{i=1}^{n} \frac{p(x_i \mid R, q)}{p(x_i \mid NR, q)} \]

- Since \(x_i \) is either 0 or 1:

\[O(R \mid q, d) = O(R \mid q) \cdot \prod_{x_i=1} \frac{p(x_i = 1 \mid R, q)}{p(x_i = 1 \mid NR, q)} \cdot \prod_{x_i=0} \frac{p(x_i = 0 \mid R, q)}{p(x_i = 0 \mid NR, q)} \]

- Let \(p_i = p(x_i = 1 \mid R, q); \quad r_i = p(x_i = 1 \mid NR, q); \)

- Assume, for all terms not occurring in the query \((q_i=0) \quad p_i = r_i \)

Then...
Binary Independence Model

\[O(R \mid q, \bar{x}) = O(R \mid q) \cdot \prod_{x_i=q_i=1} \frac{p_i}{r_i} \cdot \prod_{x_i=0} \frac{1-p_i}{1-r_i} \]

All matching terms

Non-matching query terms

\[= O(R \mid q) \cdot \prod_{x_i=q_i=1} \frac{p_i(1-r_i)}{r_i(1-p_i)} \cdot \prod_{q_i=1} \frac{1-p_i}{1-r_i} \]

All matching terms

All query terms
Binary Independence Model

\[
O(R \mid q, \bar{x}) = O(R \mid q) \cdot \prod_{x_i=q_i=1} \frac{p_i(1-r_i)}{r_i(1-p_i)} \cdot \prod_{q_i=1} \frac{1-p_i}{1-r_i}
\]

- Retrieval Status Value:

\[
RSV = \log \prod_{x_i=q_i=1} \frac{p_i(1-r_i)}{r_i(1-p_i)} = \sum_{x_i=q_i=1} \log \frac{p_i(1-r_i)}{r_i(1-p_i)}
\]
Binary Independence Model

• All boils down to computing RSV.

$$RSV = \log \prod_{x_i=q_i=1} \frac{p_i(1-r_i)}{r_i(1-p_i)} = \sum_{x_i=q_i=1} \log \frac{p_i(1-r_i)}{r_i(1-p_i)}$$

$$RSV = \sum_{x_i=q_i=1} c_i; \quad c_i = \log \frac{p_i(1-r_i)}{r_i(1-p_i)}$$

So, how do we compute c_i's from our data?
Binary Independence Model

• Estimating RSV coefficients.
• For each term i look at this table of document counts:

<table>
<thead>
<tr>
<th>Documents</th>
<th>Relevant</th>
<th>Non-Relevant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_i=1$</td>
<td>s</td>
<td>$n-s$</td>
<td>n</td>
</tr>
<tr>
<td>$X_i=0$</td>
<td>$S-s$</td>
<td>$N-n-S+s$</td>
<td>$N-n$</td>
</tr>
<tr>
<td>Total</td>
<td>S</td>
<td>$N-S$</td>
<td>N</td>
</tr>
</tbody>
</table>

- Estimates: $p_i \approx \frac{s}{S}$, $r_i \approx \frac{(n-s)}{(N-S)}$
 $c_i \approx K(N, n, S, s) = \log \frac{s/(S-s)}{(n-s)/(N-n-S+s)}$
Probability Estimates in Practice

- Assuming that relevant documents are a very small percentage of the collection, approximate statistics for nonrelevant documents by statistics from the whole collection.
- Hence, \(r_t \) (the probability of term occurrence in nonrelevant documents for a query) is \(\frac{df_t}{N} \) and

\[
\log\left(\frac{1 - r_t}{r_t}\right) = \log\left(\frac{N - df_t}{df_t}\right) \approx \log\frac{N}{df_t}
\]

- The above approximation cannot easily be extended to relevant documents.
Prabability Estimates in Practice

Statistics of relevant documents \((p_t)\) can be estimated in various ways:

1. Use the frequency of term occurrence in known relevant documents (if known).
2. Set as constant. E.g., assume that \(p_t\) is constant over all terms \(x_t\) in the query and that \(p_t = 0.5\)
 - Each term is equally likely to occur in a relevant document, and so the \(p_t\) and \((1 - p_t)\) factors cancel out in the expression for \(RSV\)
 - Weak estimate, but doesn’t disagree violently with expectation that query terms appear in many but not all relevant documents
 - Combining this method with the earlier approximation for \(r_t\), the document ranking is determined simply by which query terms occur in documents scaled by their idf weighting
Among the oldest formal models in IR

Maron & Kuhns, 1960: Since an IR system cannot predict with certainty which document is relevant, we should deal with probabilities

Assumptions for getting reasonable approximations of the needed probabilities (in the BIM):

- Boolean representation of documents/queries/relevance
- Term independence
- Out-of-query terms do not affect retrieval
- Document relevance values are independent
The difference between ‘vector space’ and ‘probabilistic’ IR is not that great:

- In either case you build an information retrieval scheme in the exact same way.
- Difference: for probabilistic IR, at the end, you score queries not by cosine similarity and tf-idf in a vector space, but by a slightly different formula motivated by probability theory.
Language Models for IR
Standard Probabilistic IR

Information need → query

$P(R \mid Q, d)$

matching

document collection

d_1, d_2, ..., d_n

Slide from Prof. Min-Yen Kan / National University of Singapore
A common search heuristic is to use words that you expect to find in matching documents as your query.

The LM approach directly exploits that idea!
What is a language model?

We can view a finite state automaton as a deterministic language model

I wish I wish I wish I wish . . . Cannot generate: “wish I wish”
or “I wish I”. Our basic model: each document was generated by a different automaton like this except that these automata are probabilistic.
A probabilistic language model

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1. STOP is not a word, but a special symbol indicating that the automaton stops.

```
frog said that toad likes frog STOP
```

\[
P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.02
\]

\[
= 0.0000000000048 = 4.8 \cdot 10^{-12}
\]
A different language model for each document

\[
P(\text{string} \mid M_{d_2}) = 0.01 \cdot 0.03 \cdot 0.05 \cdot 0.02 \cdot 0.02 \cdot 0.01 \cdot 0.02 = 0.0000000000120 = 12 \cdot 10^{-12}
\]
\[
P(\text{string} \mid M_{d_1}) < P(\text{string} \mid M_{d_2})
\]
Thus, document \(d_2\) is “more relevant” to the string “frog said that toad likes frog STOP” than \(d_1\) is.

<table>
<thead>
<tr>
<th>Language model of (d_1)</th>
<th></th>
<th>Language model of (d_2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(w)</td>
<td>(P(w</td>
<td>.))</td>
<td>(w)</td>
</tr>
<tr>
<td>STOP</td>
<td>.2</td>
<td>STOP</td>
<td>.2</td>
</tr>
<tr>
<td>the</td>
<td>.2</td>
<td>toad</td>
<td>.01</td>
</tr>
<tr>
<td>a</td>
<td>.1</td>
<td>said</td>
<td>.03</td>
</tr>
<tr>
<td>frog</td>
<td>.01</td>
<td>likes</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>. .</td>
<td>that</td>
<td>.04</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Unigram and Higher Order Models

\[P(\cdot\cdot\cdot) \]

\[= P(\cdot) P(\cdot|\cdot) P(\cdot|\cdot\cdot) P(\cdot|\cdot\cdot\cdot) \]

- **Unigram Language Models**
 \[P(\cdot) P(\cdot) P(\cdot) P(\cdot) \]

- **Bigram (generally, n-gram) Language Models**
 \[P(\cdot) P(\cdot|\cdot) P(\cdot|\cdot) P(\cdot|\cdot) \]

- **Other Language Models**
 - Probably too complex for current IR

Slide from Prof. Min-Yen Kan / National University of Singapore
Using language models in IR

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on $P(d|q)$

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- $P(q)$ is the same for all documents, so ignore
- $P(d)$ is the prior – often treated as the same for all d
 - But we can give a prior to “high-quality” documents, e.g., those with high PageRank.
- $P(q|d)$ is the probability of q given d.
- So to rank documents according to relevance to q, ranking according to $P(q|d)$ and $P(d|q)$ is equivalent.
How to compute $P(q \mid d)$

- We will make the same conditional independence assumption as for Naive Bayes.

\[
P(q \mid M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle \mid M_d) = \prod_{1 \leq k \leq |q|} P(t_k \mid M_d)
\]

($|q|$: length of q; t_k: the token occurring at position k in q)

- This is equivalent to:

\[
P(q \mid M_d) = \prod_{\text{distinct term } t \text{ in } q} P(t \mid M_d)^{tf_{t,q}}
\]

- $tf_{t,q}$: term frequency (# occurrences) of t in q
Parameter estimation

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

$$\hat{P}(t|M_d) = \frac{tf_{t,d}}{|d|}$$

($|d|$: length of d; $tf_{t,d}$: # occurrences of t in d)

- Problem with zeros.
- A single t with $P(t|M_d) = 0$ will make $P(q|M_d) = \prod P(t|M_d)$ zero.
- For example, for query [Michael Jackson top hits] a document about “top songs” (but not using the word “hits”) would have $P(t|M_d) = 0$. – That’s bad.
- We need to smooth the estimates to avoid zeros.
Smoothing

- Key intuition: A nonoccurring term is possible (even though it didn’t occur), . . .
- . . . but no more likely than would be expected by chance in the collection.
- Notation: M_c: the collection model; c_f_t: the number of occurrences of t in the collection; $T = \sum_t c_f_t$: the total number of tokens in the collection.

$$\hat{P}(t|M_d) = \frac{tf_{t,d}}{|d|}$$

- We will use $\hat{P}(t|M_c)$ to “smooth” $P(t|d)$ away from zero.
Mixture model

\[P(t \mid d) = \lambda P(t \mid M_d) + (1 - \lambda) P(t \mid M_c) \]

- Mixes the probability from the document with the general collection frequency of the word.
- High value of \(\lambda \): “conjunctive-like” search – tends to retrieve documents containing all query words.
- Low value of \(\lambda \): more disjunctive, suitable for long queries
- Correctly setting \(\lambda \) is very important for good performance.
Mixture model: Summary

\[
P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1 - \lambda) P(t_k|M_c))
\]

- What we model: The user has a document in mind and generates the query from this document.
- The equation represents the probability that the document that the user had in mind was in fact this one.
Example

- Collection: d_1 and d_2
- d_1: Jackson was one of the most talented entertainers of all time
- d_2: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = \frac{(0/11 + 1/18)/2}{2} \cdot \frac{(1/11 + 2/18)/2}{2} \approx 0.003$
- $P(q|d_2) = \frac{(1/7 + 1/18)/2}{2} \cdot \frac{(1/7 + 2/18)/2}{2} \approx 0.013$
- Ranking: $d_2 > d_1$
Exercise:

- Collection: d_1 and d_2
- d_1: Xerox reports a profit but revenue is down
- d_2: Lucene narrows quarter loss but decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$
- $P(q \mid d_1) = [(1/8 + 2/16)/2] \cdot [(1/8 + 1/16)/2] = 1/8 \cdot 3/32 = 3/256$
- $P(q \mid d_2) = [(1/8 + 2/16)/2] \cdot [(0/8 + 1/16)/2] = 1/8 \cdot 1/32 = 1/256$
- Ranking: $d_1 > d_2$
Vector space (tf-idf) vs. LM

The language modeling approach always does better in these experiments but note that where the approach shows significant gains is at higher levels of recall.

<table>
<thead>
<tr>
<th>Rec.</th>
<th>tf-idf</th>
<th>LM</th>
<th>%chg</th>
<th>significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.7439</td>
<td>0.7590</td>
<td>+2.0</td>
<td>*</td>
</tr>
<tr>
<td>0.1</td>
<td>0.4521</td>
<td>0.4910</td>
<td>+8.6</td>
<td>*</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3514</td>
<td>0.4045</td>
<td>+15.1</td>
<td>*</td>
</tr>
<tr>
<td>0.4</td>
<td>0.2093</td>
<td>0.2572</td>
<td>+22.9</td>
<td>*</td>
</tr>
<tr>
<td>0.6</td>
<td>0.1024</td>
<td>0.1405</td>
<td>+37.1</td>
<td>*</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0160</td>
<td>0.0432</td>
<td>+169.6</td>
<td>*</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0028</td>
<td>0.0050</td>
<td>+76.9</td>
<td>*</td>
</tr>
<tr>
<td>11-point average</td>
<td>0.1868</td>
<td>0.2233</td>
<td>+19.6</td>
<td>*</td>
</tr>
</tbody>
</table>
LMs vs. vector space model

- **LMs vs. vector space model: commonalities**
 - Term frequency is directly in the model.
 - Probabilities are inherently “length-normalized”.
 - Mixing document and collection frequencies has an effect similar to idf.

- **LMs vs. vector space model: differences**
 - LMs: based on probability theory
 - Vector space: based on similarity, a geometric/linear algebra notion
 - Collection frequency vs. document frequency
 - Details of term frequency, length normalization etc.
References

- *Introduction to Information Retrieval*, chapters 11 & 12.
- The slides were adapted from
 - Prof. Dragomir Radev’s lectures at the University of Michigan:
 - http://clair.si.umich.edu/~radev/teaching.html
 - the book’s companion website: