1. See the lecture notes for the solutions. The results will be as follows:
 a) \(x(n) \in \Theta(n^{\log_b a}), a \neq 1 \)
 \(\in \Theta(\log n), a = 1 \)
 b) \(x(n) \in \Theta(n^{\log_b a}), a > b \)
 \(\in \Theta(n), a < b \)
 \(\in \Theta(n \log n), a = b \)

2. See the lecture notes.

3. Breadth-first search algorithm is an optimal algorithm for the shortest path problem. The algorithm has the complexity \(W(n, m) \in \Theta(n + m) \). See the lecture notes.

4. We break the matrices into \(n \times n \) matrices. Let \(A \) be the \(kn \times n \) matrix and \(B \) be the \(n \times kn \) matrix. Then
 \[
 A = [A_1 A_2 ... A_k]^T, \quad B = [B_1 B_2 ... B_k]
 \]
 where \(A_i \)'s and \(B_i \)'s are \(n \times n \) sub-matrices.

 Now, we can easily find the product \(AB \), which is simply
 \[
 \begin{bmatrix}
 A_1B_1 & A_2B_2 & ... & A_kB_k \\
 A_2B_1 & ... & ... & ... \\
 ... & ... & ... & ... \\
 A_kB_1 & A_kB_k
 \end{bmatrix}
 \]

 Thus, \(AB \) can be expressed as a \(k \times k \) matrix, each entry of which is a product of two \(n \times n \) matrices. By using Strassen’s algorithm to do each of the multiplications, we get a running time of \(\Theta(k^2 n^{2.81}) \), since there are \(k^2 \) entries, and each entry requires a single multiplication.