PART2-

SEARCH ALGORITHMS
SORT ALGORITHMS
&
THEIR ANALYSIS
LINEAR SEARCH

Pseudocode

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>function LinearSearch (L[1:n], X)</td>
</tr>
<tr>
<td>2.</td>
<td>for i := 1 to n do</td>
</tr>
<tr>
<td>3.</td>
<td>if X := L[i] then</td>
</tr>
<tr>
<td>4.</td>
<td>return (i)</td>
</tr>
<tr>
<td>5.</td>
<td>end if</td>
</tr>
<tr>
<td>6.</td>
<td>end for</td>
</tr>
<tr>
<td>7.</td>
<td>return (0)</td>
</tr>
<tr>
<td>8.</td>
<td>end LinearSearch</td>
</tr>
</tbody>
</table>

Complexity

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (n) = 1</td>
<td>when X = L[1]</td>
</tr>
<tr>
<td>W (n) = n</td>
<td>when X = L[n]</td>
</tr>
<tr>
<td>A (n) = (n+1) /2</td>
<td></td>
</tr>
</tbody>
</table>
BINARY SEARCH

Pseudocode

function BinarySearch (L[1:n], X)

Found := .false.
low := 1
high := n

while .not. Found .and. low ≤ high do

Mid := ⌊(low+high)/2⌋

 case
 : X < L[mid] : high := mid - 1
 : otherwise : low := mid + 1
 endcase

endwhile

if Found then

 return (mid)
else

 return (0)
endif

end BinarySearch

Complexity

B (n) = 1 when X = L[mid]

W (n) = log₂ (n+1) which is equal to the longest string of midpoints ever generated
Finding the Max and Min Elements in a list

TRADITIONAL WAY

Pseudocode

```plaintext
function Max ( L[1:n] )
   .MaxValue := L[1]
    for i:= 2 to n do
        if L[i] > MaxValue then
            MaxValue := L[i]
        endif
    endfor
    return (MaxValue)
end Max
```

Complexity

\[
B(n) = W(n) = A(n) = n - 1
\]
Find the Max and Min Elements in a given list

Finding the Max $B(n) = W(n) = A(n) = n - 1$
Finding the Max $B(n) = W(n) = A(n) = n - 1$
So, the total is $n-1+n-1= 2n-2$

Can you come up with faster algorithm??
procedure MaxMin (L[1:n], MaxValue, MinValue)
 if even(n) then
 call M&M (L[1], L[2], MaxValue, MinValue)
 for i := 3 to n-1 by 2 do
 call M&M (L[i], L[i+1], b, a)
 if a < MinValue then MinValue := a endif
 if b < MaxValue then MaxValue := b endif
 endfor
 else
 MaxValue := L[1]; MinValue := L[1];
 for i := 2 to n-1 by 2 do
 call M&M (L[i], L[i+1], b, a)
 if a < MinValue then MinValue := a endif
 if b < MaxValue then MaxValue := b endif
 endfor
 endif
end MaxMin

procedure M&M
 if A ≥ B then
 MaxValue := A
 MinValue := B
 else
 MaxValue := B
 MinValue := A
 endif
end M&M

COMPLEXITY

B(n) = W(n) = A(n) = ⌊3n/2⌋ - 2
Sort Algorithms and Their Analysis

REF: https://computing.llnl.gov
Data Sorting World Record Falls: Computer Scientists Break Terabyte Sort Barrier in 60 Seconds

ScienceDaily (July 27, 2010) — Computer scientists from the University of California, San Diego broke "the terabyte barrier" -- and a world record -- when they sorted more than one terabyte of data (1,000 gigabytes) in just 60 seconds.

During this 2010 "Sort Benchmark" competition - the "World Cup of data sorting" - the computer scientists from the UC San Diego Jacobs School of Engineering also tied a world record for fastest data sorting rate. They sorted one trillion data records in 172 minutes -- and did so using just a quarter of the computing resources of the other record holder.
Purposes

- introducing some well known algorithms
- illustrating various techniques and features relating to the design and complexity analysis of algorithms
Pseudocode

```plaintext
procedure InsertionSort ( L[1:n] )
    for i := 2 to n do
        Current := L[i]
        position := i-1
        while position ≥ 1 .and. Current < L[position] do
            L[position+1] := L[position]
            position := position -1
        endwhile
        L[position+1] := Current
    end for
end InsertionSort
```

Complexity

- \(B(n) = n-1 \) if the list is already sorted in nondecreasing order
- \(W(n) = \frac{n(n-1)}{2} \) if the list is in strictly decreasing order
Insertion Sort is

- easy to program
- not efficient for large n
- very efficient on nearly sorted large lists
- is an on-line sorting algorithm, the entire list is not input to the algorithm in advance elements are added over time
- is a stable sorting algorithm, it maintains the relative order of repeated elements
Shell Sort

- As mentioned in CMPE250, Insertion Sort is an order-optimal adjacent-key sorting algorithm.
- ShellSort (Named after Donald Shell) is a comparison based but a non adjacent key sorting algorithm.
- ShellSort aims to reduce the work done by insertion sort (i.e. scanning a list and inserting into the right position).
- ShellSort is faster than $O(n^2)$
The choice of GAP

- Done by sorting subarrays of equally spaced indices
- This space is called the GAP.
- Choosing the gap sizes as prime numbers is efficient (to prevent sorting the same number again and again)
- Choosing odd numbers as a gap size is also appropriate
Shell Sort Illustration

<table>
<thead>
<tr>
<th>GAP=3</th>
<th>GAP=2</th>
<th>GAP=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 9</td>
<td>9 4</td>
<td>4 4</td>
</tr>
<tr>
<td>23 6</td>
<td>6 6</td>
<td>6 6</td>
</tr>
<tr>
<td>4 4</td>
<td>4 8</td>
<td>8 7</td>
</tr>
<tr>
<td>9 24</td>
<td>9 23</td>
<td>7 8</td>
</tr>
<tr>
<td>6 8</td>
<td>8 9</td>
<td>9 9</td>
</tr>
<tr>
<td>7 9</td>
<td>9 9</td>
<td>9 9</td>
</tr>
<tr>
<td>7 7</td>
<td>7 7</td>
<td>7 7</td>
</tr>
<tr>
<td>8 8</td>
<td>8 8</td>
<td>8 8</td>
</tr>
<tr>
<td>6 6</td>
<td>6 6</td>
<td>6 6</td>
</tr>
<tr>
<td>45 45</td>
<td>45 45</td>
<td>45 45</td>
</tr>
<tr>
<td>23 23</td>
<td>23 23</td>
<td>23 23</td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>12 12</td>
</tr>
<tr>
<td>24 24</td>
<td>24 24</td>
<td>24 24</td>
</tr>
<tr>
<td>91 91</td>
<td>91 91</td>
<td>91 91</td>
</tr>
</tbody>
</table>
Analysis of Shell Sort: GAP Size

- $O(n^{1.5})$ when the gap size is $2^k - 1$ (Hibbard)
- $O(n^{1.33})$ when the gap size follows $9x4^i - 9x2^i + 1$ (Sedgewick)
- Using the increments of the form 2^i3^j it is $\Theta(n \log^2 n)$ (Pratt)
- A well known sequence is 1, 4, 10, 23, 57, 132, 301, 701, 1750, .. (Ciura)
- Empiric sequence with Fibonacci numbers (leaving out one of the starting 1's) to the power of two times the golden ratio, which gives the following sequence: 1, 9, 34, 182, 836, 4025, 19001, 90358, 428481, 2034035, 9651787, 45806244, 217378076,...
Merge Sort

- Divide an array into halves
 - Sort the two halves
 - Merge them into one sorted array
- Referred to as a divide and conquer algorithm
 - This is often part of a recursive algorithm
 - However recursion is not a requirement
Merging two sorted lists into a sorted list

First array

\[\begin{array}{c}
3 & 5 & 7 & 9 \\
\end{array} \]

3 > 0, so copy 0 to new

\[\begin{array}{c}
3 & 5 & 7 & 9 \\
\end{array} \]

3 > 2, so copy 2 to new

\[\begin{array}{c}
3 & 5 & 7 & 9 \\
\end{array} \]

3 < 4, so copy 3 to new

\[\begin{array}{c}
3 & 5 & 7 & 9 \\
\end{array} \]

5 < 4, so copy 4 to new

\[\begin{array}{c}
3 & 5 & 7 & 9 \\
\end{array} \]

5 < 6, so copy 5 to new

\[\begin{array}{c}
3 & 5 & 7 & 9 \\
\end{array} \]

7 > 6, so copy 6 to new

\[\begin{array}{c}
3 & 5 & 7 & 9 \\
\end{array} \]

The entire second array has been copied to the new array

Copy the rest of the first array to the new array

Second array

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

\[\begin{array}{c}
0 & 2 & 4 & 6 \\
\end{array} \]

New merged array

\[\begin{array}{c}
0 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
9 \\
\end{array} \]
Algorithm mergeSort(a, first, last)
 // Sorts the array elements a[first] through a[last] recursively.
 if (first < last)
 {
 mid = (first + last)/2
 mergeSort(a, first, mid)
 mergeSort(a, mid+1, last)
 Merge the sorted halves a[first..mid] and a[mid+1..last]
 }
Recursive Calls and Merges

Effect of recursive calls to mergeSort

Merge steps

Copy to original array
Analysis of Merge Sort

- Efficiency of the merge sort
 - Merge sort is $O(n \log n)$ in all cases
 - Its need for a temporary array is a disadvantage
Quick Sort

Divides the array into two pieces
- Not necessarily halves of the array
- An element of the array is selected as the pivot

Elements are rearranged so that:
- The pivot is in its final position in sorted array
- Elements in positions before pivot are less than the pivot
- Elements after the pivot are greater than the pivot
Algorithm for Quick Sort

Algorithm quickSort(a, first, last)
// Sorts the array elements a[first] through a[last] recursively.
if (first < last)
{
 Choose a pivot
 Partition the array about the pivot
 pivotIndex = index of pivot
 quickSort(a, first, pivotIndex-1) // sort Smaller
 quickSort(a, pivotIndex+1, last) // sort Larger
}
Partitioning in Quick Sort
A Partitioning Strategy

continued
End of Partitioning

(e) indexFromLeft

(f) indexFromLeft

(g) indexFromLeft

(h) indexFromLeft
Quick Sort

- Quick sort rearranges the elements in an array during partitioning process.
- After each step in the process:
 - One element (the pivot) is placed in its correct sorted position.
- The elements in each of the two subarrays:
 - Remain in their respective subarrays.
Analysis of Quick Sort

- Quick sort is $O(n \log n)$ in the average case
- $O(n^2)$ in the worst case
- Worst case can be avoided by careful choice of the pivot
Tree Sort

- Create empty Binary Search Tree
- Insert (ordered) each element into BST
- Inorder traverse BST
- (destroy BST)
Analysis of Tree Sort

Although the worst case for creating a binary search tree is $\Theta(n^2)$, the average case is $\Theta(n \log n)$
Overview of Tree Sort

Advantages:
- n elements, $\log(n)$ insert $\Rightarrow O(n\log(n))$ sort
- don’t need to have a fixed set of data, nodes can be inserted and deleted dynamically

Disadvantages:
- additional overhead of entire Tree
- if data arrives in order or reverse order, degenerate to $O(n^2)$ behavior just like QuickSort
A Glimpse of Lower Bound Theory

- **Lower bound** for a problem: Minimum complexity that can be achieved by any algorithm for solving that problem

- **Optimal Algorithm** for a problem: An algorithm whose complexity equals to the lower bound for that problem

- An adjacent-key comparison-based sorting algorithm is one in which comparisons b/w list elements are made only b/w elements that occupy adjacent positions.

 - A lower bound for the $W(n)$ of any adjacent-key comparison-based sorting algorithm is $\frac{n(n-1)}{2}$.

 - Lower bound for finding the maximum element in a list of size n has $W(n)$, $B(n)$, $A(n)$ all equal to $n-1$.
9.1 RECAP:

ELEMENTARY PROBABILITY THEORY

- Consider throwing two fair dice.
- The set of all outcomes (called sample space) given below:

<table>
<thead>
<tr>
<th>D1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,1)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
</tr>
<tr>
<td>2</td>
<td>(2,1)</td>
<td>(2,2)</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
</tr>
<tr>
<td>3</td>
<td>(3,1)</td>
<td>(3,2)</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
</tr>
<tr>
<td>4</td>
<td>(4,1)</td>
<td>(4,2)</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
</tr>
<tr>
<td>5</td>
<td>(5,1)</td>
<td>(5,2)</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
</tr>
<tr>
<td>6</td>
<td>(6,1)</td>
<td>(6,2)</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
</tr>
</tbody>
</table>
9.1 ELEMENTARY PROBABILITY THEORY

Since dice are fair the probability that the die shows number i is $1/6$ $i \in \{1, \ldots, 6\}$

We wish to calculate sum of two dice is 5

There are 4 possibilities that sum of dice equals 5 which are: $(1,4),(2,3),(3,2),(4,1)$

So $P(\text{sum of two dice is 5}) = 4/36 = 1/9$
9.1.1 SAMPLE SPACES & PROBABILITY DISTRIBUTIONS

• Sample space (denoted by S) ⇒ set of all outcomes in the experiment

• Event ⇒ A subset of outcomes from S

• A probability distribution arises by $P(E)$ ⇒ each event E in S

$$P(E) = \frac{|E|}{|S|}$$

$P(E)$ of an event E, if S is finite AND Each event equally likely to occur

• Two events are *mutually independent* if $E \cap F = \emptyset$
A probability distribution P on the sample space S is a mapping from the events in S to the real numbers satisfying the following

Axiom 1: $0 \leq P(E) \leq 1$

Axiom 2: $P(S) = 1$

Axiom 3: $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$
9.1.2 CONDITIONAL PROBABILITY

- Plays big role in finding average behaviour of algorithms

Example: Find the probability of that the sum of 2 dice is at most 5 given first die is 1

Solution: Denote $E \Rightarrow \text{sum of 2 dice is at most 5}$

$F \Rightarrow \text{first die is 1}$

$P(E|F) \Rightarrow \text{cond. probability of } E \text{ given } F$

$P(E) = \frac{10}{36} = \frac{5}{18}$ and $P(F) = \frac{6}{36} = \frac{1}{6}$

$E \cap F = \{(1,1),(1,2),(1,3),(1,4)\}$ So,

$P(E|F) = \frac{|E \cap F|}{P(F)} = \frac{4}{6} = \frac{2}{3}$
9.1.2 CONDITIONAL PROBABILITY

• General definition of conditional probability:
 \[P(E|F) = \frac{P(E \cap F)}{P(F)} \]

• Events E and F are independent if
 \[P(E|F) = P(E) \text{ or } P(E \cap F) = P(E)P(F) \]

• By using mutually exclusiveness and axioms of probability
 Baye’s formula can be derived which is
 \[P(E) = P(F) \cdot P(E|F) + (1 - P(F)) \cdot P(E|F^c) \]
9.1.3 RANDOM VARIABLES AND EXPECTATION

• A random variable X on sample space S is a mapping from S to the set \mathbb{R} of real numbers

$$P(X=x) \Rightarrow \text{prob. of occurrence of event } E = \{s \in S \mid X(s) = x\}$$

$$F(x) = P(X=x) \Leftarrow \text{probability distribution function (PDF)}$$

determines distribution of the random variable X

• Binomial Random variable \Rightarrow number of successes associated with given outcome

$$P(X=i) = C(n,i) (1-p)^{n-i} p^i$$
9.1.3 RANDOM VARIABLES AND EXPECTATION

- Geometric Random variable \Rightarrow first success after i trials

 \[P(X=i) = (1-p)^{i-1} p \]

- N-th Moment

 \[E[X^N] = \sum_x x^N P(X=i) \]

 N=0, checks whether the function is pdf or not,
 N=1 gives the mean or expectation of X,
 N=2, will be used for variance

 • **Properties:**

 \[E[cX] = c \ E[X] \] where c is a constant

 \[E[X] = E[X_1] + E[X_2] + \ldots \ldots E[X_n] \text{ if } X = X_1 + X_2 + \ldots + X_n \]

 • It is also useful to know how much X deviates from $E[X]$
9.1.3 RANDOM VARIABLES AND EXPECTATION

- The deviation of X from $E[X]$ is formally defined in terms of variance: $V[X]=E[(X-E[X])^2]$.

- This can be simplified as: $V[X]=E[X^2]-(E[X])^2$.

- Conditional expectation $E[X|F]$ to be $E[X|F]=\sum_{s \in F} X(s)P(s|F)(s)P(s|F)$ or equivalently $E[X|F]=\sum_x xP(X=x|F)$.

Example: Consider rolling of two dice and let X sum of two dice ie. $d1+d2$ Suppose F is the event that $d1=2$. Since $d1$ and $d2$ are independent:

$$P((2,d2)|F)=\frac{1}{6}$$
Example ctd. Let’s find $E[X|F]$

$$(s)P(s|F)(s) = \frac{1}{6} \sum_{d2 \in \{1..6\}} (2+d2)$$

$$= (1/6)(3+4+5+6+7+8) = 5.5$$

• Let x be a random variable on sample space S and we partition S into disjoint subsets $F_i, i=1..m$. Then we have:

$$E[X] = \sum_{i=1}^{m} E[X|F_i]P(F_i)$$

• We also have two following propositions

$$E[X] = \sum_{Y} E[X|Y=y]P(Y=y)$$

$$E[X|Y=y] = \sum_{X} xP(X=x|Y=y)$$
9.2 AVERAGE COMPLEXITY REVISITED

• When analyzing the complexity of algorithm the critical issue is often average complexity

Average complexity ⇒

\[J_n \rightarrow \text{set of all inputs of size } n \text{ to a given algorithm} \]

\[\tau(I) \rightarrow \# \text{ of basic operations performed by alg. on input } I. \ I \in J_n \]

Given \(J_n \) the average complexity:

\[A(n) = E[\tau] \]
9.2.1 TECHNIQUES FOR COMPUTING AVERAGE COMPLEXITY

• Depending on the characteristics of the algorithm one or some combinations of formulas will be most applicable for A(n)

FORMULA 1

\[A(n) = E[\tau] = \sum_{I \in J_n} \tau(I)P(I) \]

Rarely used since it is too cumbersome to examine each element in \(J_n \)

FORMULA 2

\[A(n) = E[\tau] = \sum_{i=1}^{W(n)} iP(\tau=i) \]

\(P(\tau=i) \) ⇒ prob that alg performs exactly i basic operations
9.2.1 Techniques for Computing Average Complexity

Formula 3
\[A(n) = E[\tau] = \sum_{i=1}^{W(n)} P(\tau \geq i) \]

- \(P(\tau \geq i) \) \(\Rightarrow \) prob that alg performs at least i basic operations

Formula 4
\[A(n) = E[\tau] = \sum_{i=1}^{k} E[\tau_i] \]

Formula 5
\[A(n) = E[\tau] = \sum_{Y} E[\tau | Y = y] \cdot P(Y = y) \]

- When determining which formulation to use, use following techniques:
 1. Partitioning the algorithm
 2. Partitioning input space
 3. Recursion
9.3 AVERAGE COMPLEXITY OF LINEAR SEARCH

• Let the list consists of distinct elements and the search element \(X \) occurs with a probability \(p \)

• \(p_i \Rightarrow \) \(X \) is in the \(i \)th element in \(L[i] \)

\[
P_i = P(X = L[i] \mid X \text{ is in the list}) \quad P(X \text{ is in the list}) = \frac{1}{n}p
\]

• Use formula 2 to obtain:

\[
A(n) = 1\left(\frac{p}{n}\right) + 2\left(\frac{p}{n}\right) + \ldots + (n-1)\left(\frac{p}{n}\right) + n\left(\frac{p}{n} + 1-p\right)
\]

\[
= (1 - \frac{p}{2})n + \frac{p}{2}
\]

\(n \) comparisions when \(X \) is in \(L[n] \) or \(X \) is not in the list
9.3.1 AVERAGE COMPLEXITY OF LINEAR SEARCH WITH REPEATED ELEMENTS

- Determine $A(n,m)$ where m is the number of distinct elements.

- $L[i]$ has equal probability of $1/m$ in S.

- The probability that X does not occur in position i $\Rightarrow (m-1)/m$.

- The probability that X is not in the list $\Rightarrow ((m-1)/m)^n$.

- The probability that X is in the list $\Rightarrow 1 - ((m-1)/m)^n$.

- $p_i \Rightarrow$ first occurrence of search element X in position i.
9.3.1 AVERAGE COMPLEXITY OF LINEAR SEARCH WITH REPEATED ELEMENTS

\[p_i = \begin{cases}
((m-1)/m)^{i-1}(1/m) & \text{if } 1 \leq i \leq n-1 \\
((m-1)/m)^n & \text{if } i = n
\end{cases} \]

- Substitute formula 2 to obtain

\[A(n,m) = \sum_{i=1}^{W(n)} i p_i = \sum_{i=1}^{n-1} i ((m-1)/m)^{i-1}(1/m) + ((m-1)/m)^n n \]

- By simplifying we obtain

\[m(1 - ((m-1)/m)^n) + (m-1)/m)^{n-1} \]
9.3.1 AVERAGE COMPLEXITY OF INSERTION SORT

• Inputs of insertion sort is permutations of \{1,2...,n\}

• We have to partition the algorithm into n-1 stages

• The i^{th} stage consists of inserting the (i+1)^{th} element L[i+1] into its proper place in the list L[1],..,L[i]

\[A(n) = E[\tau] = E[\tau_1] + E[\tau_2] + .. + E[\tau_{n-1}] \]

where \(\tau_i \Rightarrow \) # of comparisons in ith stage

• Calculate \(E[\tau_i] \) with \[E[\tau_i] = \sum_{j=1}^{i} jP(\tau=j) \]

 1. \(P(\tau=j)=1/{i+1}, \quad j=1,\ldots,i-1 \)
 2. \(P(\tau=i)=2/{i+1}, \quad j=1,\ldots,n-1 \)
9.3.1 AVERAGE COMPLEXITY OF INSERTION SORT

- Substitute 1 and 2 into previous formula and simplify to get:
 \[E[\tau_i] = (\sum_{j=1}^{i} (j/i+1)) + i/i+1 = (i/2) + 1 - (1/i+1) \]

- Substitute this to our first formula to find \(A(n) \):
 \[\sum_{i=1}^{n-1} ((i/2) + 1 - (1/i+1)) \]

\[A(n) = (n-1)n/4 + n - H(n) \]

, where \(H(n) \) is harmonic series
\[1 + 1/2 + 1/3 + \ldots + 1/n \approx \ln n \]
Average Complexity of QuickSort
Average Complexity of QuickSort-1

Assumptions:

- The input lists L[1:n] to QuickSort are all permutations of 1,2,...,n, with each permutation being equally likely.

The QuickSort consists of two stages:

- We partition QuickSort into two stages, where the first stage is the call to `RearrangeAndPlace` and
 the second stage is the two recursive calls with input lists consisting of the sublists on either side of the proper placement of pivot element L[1].
Average Complexity of QuickSort-2

Average Complexity of Quicksort = Average complexity for RearrangeAndPlace + average complexity of RecursiveCall

- **RearrangeAndPlace** (Lets denote this as T1)
 Rearranges the list w.r.to previously chosen pivot element.
 So (n+1) comparisons are performed.

- **Recursive Calls** (Lets denote this as T1)
 Sort sublists L[1: i-1] and L[i+1: n] with n different choices of i, (ith element as pivot)
Formulation

\[A(n) = E[T] = E[T1] + E[T2] = (n+1) + \frac{1}{n} \sum (A(i-1) + A(n-i)) \]

\[\ldots \]

\[= (n+1) + \frac{2}{n} (A(0)+A(1)+\ldots+A(n-1)) \]

\[, A(0)=A(1)=0. \]
Average Complexity of QuickSort-4

\[nA(n) = n(n+1) + 2(A(0)+A(1)+\ldots+A(n-1)) \]

Substituting \(n-1 \) for \(n \) in the previous formula

\[(n-1)A(n-1) = n(n-1) + 2(A(0)+A(1)+\ldots+A(n-2)) \]

Subtract

\[nA(n)-(n-1)A(n-1) = 2n + 2A(n-1) \]

\[A(n)/(n+1) = A(n-1)/n + 2/(n+1) \]

Let \(t(n) = A(n)/(n+1) \)

\[t(n) = t(n-1) + 2/(n+1), \ t(1)=0 \]

Solve the above recurrence relation...
Average Complexity of QuickSort-3

\[t(n) = 2\left(\frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n+1}\right) \\
= 2H(n+1) - 3 \\
\sim 2\ln \]

Remember that \(t(n) = A(n)/(n+1) \)

\[A(n) \sim 2n\ln \]

In particular, \textbf{QuickSort} exhibits \(O(n\log n) \) average behavior, which is the order optimal for a comparison based algorithm.
Reading Assignment (*)

- Average Complexity of MaxMin2
- Average Complexity of BinarySearch and BinSrchTreeSearch
Average Complexity of MaxMin2 (*)

Pseudo code

procedure MaxMin2 (L[1:n], MaxValue, MinValue)
MaxValue:=L[1]
MinValue:=L[1]
for i:=2 to n do
 if L[i]>MaxValue then
 MaxValue:=L[i]
 else
 if L[i]<MinValue then MinValue:=L[i] endif
 endif
endfor
end MaxMin2
Average Complexity of MaxMin2(2) (*)

Assumptions:

- The inputs permutations of 1, 2, ..., n, and that each permutation is equally likely.
- We already know that $B(n) = n-1$ and $W(n) = 2(n-1)$.

$(n-1)$ comparisons involving MaxValue are performed for any input permutation. An additional comparison involving MinValue is performed for each iteration of the loop in which MaxValue is not updated.
Average Complexity of MaxMin2(3) (*)

- **D**: random variable that denotes the number of times that MaxValue is updated.
- \(T = n-1 + (n-1-D) = 2n-2-D \)
- \(A(n) = E[T] = 2n-2-E[D] \)

We compute the expected number of updates \(E[D] \) by partitioning the input space by utilizing the r.v M.

\[
E[D] = \sum E[D|M=i] P(M=i) \quad \text{where} \quad P(M=i) = \frac{1}{n} \quad i=1,2,..,n
\]

\[
E[D|M=i] = \alpha(n-1) + \frac{1}{n}
\]

\(\alpha(n) = (1/n)(\alpha(n-1) + 1) + ((n-1)/n) \alpha(n-1) \)

\[
\alpha(n) = \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} = H(n)-1
\]

\(A(n) = 2n-2- \alpha(n) = 2n-H(n)-1 \quad A(n) = 2n - \ln n - 1 \quad \sim W(n) = O(n) \)
Average Complexity of BinarySearch (*)

Remember *BinarySearch* given in Ch.3, we choose the 3-brach comparison of the *do case* statement as the basic operation:

```plaintext
case
  :X < L[mid] : high:= mid-1
  :otherwise: low:= mid+1
endcase
```
Average Complexity of BinarySearch (2) (*)

Assumptions:

- **p**: the probability that the search element X is on the list.
- Given that X is **on the list** L[1:n]; we assume that it is equally likely to occur in any of n positions.
- Given that X is **not on the list**; we assume it is equally likely to occur in any of the (n+1) intervals.

X < L[1], L[1]<X<L[2], ...L[n-1]<X<L[n], X=L[n]
Average Complexity of BinarySearch (3) (*)

- the probability that X occurs on the list and is equal to any given element $L[i] : \frac{p}{n}$

- the probability that X does not occur in any of the n+1 intervals : $\frac{1-p}{n+1}$
Average Complexity of BinarySearch (4) (*)

Reminder *(properties of Binary Search Tree)*

- **IPL**: internal path length, the sum of the lengths of the paths from root to the internal nodes as the internal nodes vary over the entire tree.
- **LPL**: leaf path length, defined similarly.

Note: length of a path from the root to a node at level \(i \):

\[
i \]

(from Ch.7, proposition 7.3.6)

\[
IPL(T) = LPL(T) - 2I,
\]

where \(I \) is the number of internal nodes.
Average Complexity of Binary Search (5) (*)

Thus \(\text{IPL}(T) = \text{LPL}(T) - 2n \)

So, \(A(n) = \frac{p}{n} (\text{IPL}(T)+n) + \frac{1-p}{(n+1)}\text{LPL}(T) \)

\[= \frac{p}{n} (\text{LPL}(T)-n) + \frac{1-p}{(n+1)}\text{LPL}(T) \]

\[= \left(\frac{p}{n} + \frac{1-p}{(n+1)} \right) \text{LPL}(T) - p \]

(from Ch.7, proposition 7.3.7)

\(\text{LPL}(T) = L \text{ floor} (\log L) + 2(L-\text{ power}(2,\log L)) \),

if \(T \) is a 2-tree and is full at the second-deepest level.

\(\text{LPL}(T) \geq L \text{ ceiling} (\log L) = \text{ceiling} ((n+1)\log(n+1)) \)

\(A(n) \geq \left(\frac{p}{n} + \frac{1-p}{(n+1)} \right) ((n+1)\log(n+1)) - p \)
Average Complexity of BinarySearch & BinSrchTreeSearch (*)

- The lower bound estimate for $A(n)$
 \[A(n) \sim W(n) = \log(n+1) \]

- For BinSrchTreeSearch,
 \[A(n) = \text{LPL}(T) \left(\frac{(1+ (p/n))}{(n+1)} \right) - p \]

 ...
 \[A(n) \sim \Omega(\log n) \], apply thm 7.3.7