Part 1 - Introduction

- What is Algorithm?
- Modern Theory of Algorithms
 - Algorithm manner from Ancient to Modern times
- Detailed Model Analysis
- Simplified Model Analysis
- Serial and Parallel Computing
- Algorithms for Solving Problems

- Find the square root of 7
- ? how far you are away from the exact value?
• Start with an arbitrary positive start value x_0 (the closer to the root, the better).
 • $x_0 \approx \sqrt{S}$.

Let x_{n+1} be the average of x_n and S / x_n (using the arithmetic mean to approximate the geometric mean).

• Repeat above steps, until the desired accuracy is achieved

\[
x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right),
\]
Ancient Algorithms

- Babylonians knew how to approximate square roots (500 B.C.)
- Euclid’s algorithm (300 B.C.) still used today to find GCD.
- Newton’s method (1600’s) generalizes this to find zeroes of polynomial
- “Numerical” algorithms
Modern Theory of Algorithm

- Difference Engine => Analytic engine
- Turing Machine
- Instruction usage
- Data Structures
- Now

Serial, Parallel processors, Computing in Space travel, robotics, graphics, simulations of complex systems and medical analysis.
An **algorithm** is a step-by-step procedure for solving a problem in a finite amount of time.
Math you need to Review

- Series summations
- Logarithms and Exponents
- Proof techniques
- Basic probability

properties of logarithms:
\[
\begin{align*}
\log_b(xy) &= \log_b x + \log_b y \\
\log_b \left(\frac{x}{y}\right) &= \log_b x - \log_b y \\
\log_b x^a &= a \log_b x \\
\log_b a &= \log_x a / \log_x b
\end{align*}
\]

properties of exponentials:
\[
\begin{align*}
a^{(b+c)} &= a^b a^c \\
a^{bc} &= (a^b)^c \\
a^b / a^c &= a^{(b-c)} \\
b &= a^{\log_a b} \\
b^c &= a^{c \log_a b}
\end{align*}
\]
Sum series-examples

\[
\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i = \lim_{n \to \infty} \sum_{i=0}^{n} \left(\frac{1}{2}\right)^i = \lim_{n \to \infty} \left(2 - \left(\frac{1}{2}\right)^n\right) = 2.
\]
\[
\sum_{i=-\infty}^{n} 2^i = \left(\sum_{i=-\infty}^{0} 2^i \right) + \left(\sum_{i=0}^{n} 2^i \right) - 1 \\
= \left(\sum_{i=0}^{\infty} \left(\frac{1}{2} \right)^i \right) + \left(\sum_{i=0}^{n} 2^i \right) - 1 \\
= (2) + (2^{n+1} - 1) - 1 \\
= 2^{n+1}
\]
\[
S_n = \sum_{i=0}^{n} \frac{i}{2^i}
\]

\[
2S_n = 2\sum_{i=0}^{n} \frac{i}{2^i} = \sum_{i=0}^{n} \frac{i}{2^{i-1}} = \sum_{j=-1}^{n-1} \frac{(j+1)}{2^j} = \sum_{j=0}^{n} \frac{(j+1)}{2^j} - (n+1)/2^n
\]

\[
2S_n - S_n = \sum_{i=0}^{n} \frac{1}{2^i} - (n+1)/2^n
\]

\[
S_n = (2 - (1/2)^n) - (n+1)/2^n
\]

\[
\sum_{i=0}^{\infty} \frac{i}{2^i} = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{i}{2^i} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (2 - (1/2)^n) - (n+1)/2^n = 2.
\]
Recurrence Relations

\[T(n) = T(n - 1) + 1, \quad n > 0 \]
\[= (T(n - 2) + 1) + 1 \]
\[= ((T(n - 3) + 1) + 1) + 1 \]
\[\vdots \]
\[= T(n - k) + k \]
\[\vdots \]
\[= T(0) + n, \quad n - k = 0 \]
\[= n + 1. \]
Assume that \(n = ma \):

\[
T(n) = T(n - a) + 1, \quad n > a
\]
\[
T(ma) = T((m - 1)a) + 1
\]
\[
= (T((m - 2)a) + 1) + 1
\]
\[
= ((T((m - 3)a) + 1) + 1) + 1
\]
\[
\vdots
\]
\[
= T((m - k)a) + k
\]
\[
\vdots
\]
\[
= T(a) + (m - 1), \quad (m - k) = 1
\]
\[
= m
\]
\[
= n/a.
\]
\[T(n) \]
\[= \quad 2T(n - 1) + 1, \quad n > 0 \]
\[= \quad 2(2T(n - 2) + 1) + 1 \]
\[= \quad 2(2(2T(n - 3) + 1) + 1) + 1 \]
\[\vdots \]
\[= \quad 2^k T(n - k) + \sum_{i=0}^{k-1} 2^i \]
\[\vdots \]
\[= \quad 2^n T(0) + \sum_{i=0}^{n-1} 2^i, \quad (n - k) = 0 \]
\[= \quad 2^n + 2^n - 1 \]
\[= \quad 2^{n+1} - 1. \]
\[T(n) = \begin{cases} T(n/2) + 1, & n > 1 \\ (T(n/4) + 1) + 1 \\ \vdots \\ (T(n/8) + 1) + 1 \\ \vdots \\ T(n/2^k) + k \\ \vdots \\ T(1) + \log_2 n, & (n/2^k) = 1 \\ \end{cases}
= 1 + \log_2 n. \]
\[T(n) = 2T(n/2) + 1, \quad n > 1 \]
\[= 2(2T(n/4) + 1) + 1 \]
\[= 2(2(2T(n/8) + 1) + 1) + 1 \]
\[\vdots \]
\[= 2^k T(n/2^k) + \sum_{i=0}^{k-1} 2^i \]
\[\vdots \]
\[= nT(1) + n - 1, \quad (n/2^k) = 1 \]
\[= 2n - 1. \]
\[T(n) = 2T(n/2) + n, \quad n > 1 \]
\[= 2(2T(n/4) + n/2) + n \]
\[= 2(2(2T(n/8) + n/4) + n/2) + n \]
\[\vdots \]
\[= 2^kT(n/2^k) + kn \]
\[\vdots \]
\[= nT(1) + n \log_2 n, \quad (n/2^k) = 1 \]
\[= n + n \log_2 n. \]
Assumptions for the computational model

- Basic computer with sequentially executed instructions
- Infinite memory
- Has standard operations; addition, multiplication, comparison in 1 time unit unless stated otherwise
- Has fixed-size (32bits) integers such that no-fancy operations are allowed!!! eg. matrix inversion,
Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance, image, robotics, AI, etc.
Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Assume a subprogram is written to get an accurate measure of the actual running time
- Plot the results
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm \texttt{arrayMax}(A, n)

Input array \(A\) of \(n\) integers

Output maximum element of \(A\)

\[
\begin{align*}
\text{currentMax} & \leftarrow A[0] \\
\text{for } i & \leftarrow 1 \text{ to } n - 1 \text{ do} \\
& \text{if } A[i] > \text{currentMax} \text{ then} \\
& \quad \text{currentMax} \leftarrow A[i] \\
\text{return } \text{currentMax}
\end{align*}
\]
Pseudocode Details

Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces

Method declaration
Algorithm *method* (*arg* [, *arg*...])
Input ...
Output ...

Method call
var.method (*arg* [, *arg*...])

Return value
return *expression*

Expressions
Assignment (like = in Java)
Equality testing (like == in Java)
n^2 Superscripts and other mathematical formatting allowed
Important Functions

Seven functions that often appear in algorithm analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^2$
- Cubic $\approx n^3$
- Exponential $\approx 2^n$

In a log-log chart, the slope of the line corresponds to the growth rate of the function.
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
Detailed Model 4 counting operations-1

The time require for the following operations are all constants.

\(\tau_{\text{fetch}} \)	to fetch an integer operant from memory
\(\tau_{\text{store}} \)	to store an integer result in memory
\(\tau_{+} \)	to add two integers
\(\tau_{-} \)	to subtract two integers
\(\tau_{\times} \)	to multiply two integers
\(\tau_{/} \)	to divide two integers
\(\tau_{<} \)	to comparison of two integers
Detailed Model 4 counting operations-2

The time require for the following operations are all constants.

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{\text{return}})</td>
<td>to return from a method</td>
</tr>
<tr>
<td>(\tau_{\text{call}})</td>
<td>to call a method</td>
</tr>
<tr>
<td>(\tau_{\text{store}})</td>
<td>to pass an integer argument to a method</td>
</tr>
<tr>
<td>(\tau_{[.]})</td>
<td>for the address calculation (not including the computation of the subscription)</td>
</tr>
<tr>
<td>(\tau_{\text{new}})</td>
<td>to allocate a fixed amount of storage from the heap using new</td>
</tr>
<tr>
<td>Statement</td>
<td>Time required</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>(y = x;)</td>
<td>(\tau_{\text{fetch}} + \tau_{\text{store}})</td>
</tr>
<tr>
<td>(y = 1;)</td>
<td>(\tau_{\text{fetch}} + \tau_{\text{store}})</td>
</tr>
<tr>
<td>(y = y + 1;)</td>
<td>(2 , \tau_{\text{fetch}} + \tau_{\text{+}} + \tau_{\text{store}})</td>
</tr>
<tr>
<td>(y += 1;)</td>
<td>(2 , \tau_{\text{fetch}} + \tau_{\text{+}} + \tau_{\text{store}})</td>
</tr>
<tr>
<td>++y;</td>
<td>(2 , \tau_{\text{fetch}} + \tau_{\text{+}} + \tau_{\text{store}})</td>
</tr>
<tr>
<td>y++;</td>
<td>(2 , \tau_{\text{fetch}} + \tau_{\text{+}} + \tau_{\text{store}})</td>
</tr>
</tbody>
</table>
Detailed Model... Example 1: Sum

\[
\sum_{i=1}^{n} i
\]

... public static int \textbf{sum}(int n) {
 int result = 0;
 for (int i = 1; i <= n; ++i) {
 result += i;
 }
 return result;
}

<table>
<thead>
<tr>
<th>Statement</th>
<th>Time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>int result = 0;</td>
<td>(\tau_{\text{fetch}} + \tau_{\text{store}})</td>
</tr>
<tr>
<td>int i = 1</td>
<td>(\tau_{\text{fetch}} + \tau_{\text{store}})</td>
</tr>
<tr>
<td>i <= n</td>
<td>((2\tau_{\text{fetch}} + \tau_{<}) (n+1))</td>
</tr>
<tr>
<td>++i</td>
<td>((2\tau_{\text{fetch}} + \tau_{+} + \tau_{\text{store}}) n)</td>
</tr>
<tr>
<td>result += i</td>
<td>((2\tau_{\text{fetch}} + \tau_{+} + \tau_{\text{store}}) n)</td>
</tr>
<tr>
<td>return result</td>
<td>(\tau_{\text{fetch}} + \tau_{\text{return}})</td>
</tr>
</tbody>
</table>
Detailed Model... Example2 (*)

\[y = a[i] \]

\[3\tau_{\text{fetch}} + \tau_{[.]} + \tau_{\text{store}} \]

- operations
 - fetch a (the base address of the array)
 - fetch i (the index into the array)
 - address calculation
 - fetch array element a[i]
 - store the result
Detailed Model...Example3: Horner (*)

\[\sum_{i=0}^{n} a_i x^i \]

```java
public class Horner {

    public static void main(String[] args) {
        Horner h = new Horner();
        int[] a = { 1, 3, 5 };
        System.out.println("a(1)=" + h.horner(a, a.length - 1, 1));
        System.out.println("a(2)=" + h.horner(a, a.length - 1, 2));
    }

    int horner(int[] a, int n, int x) {
        int result = a[n];
        for (int i = n - 1; i >= 0; --i) {
            result = result * x + a[i];
            //**/System.out.println("i=" + i + " result" + result);
        }
        return result;
    }
}
```

```
output
i=1  result 8
i=0  result 9
a(1)=9
i=1  result 13
i=0  result 27
a(2)=27
```
Detailed Model...Example-4 (*)

```java
public class FindMaximum {

    public static void main(String[] args) {
        FindMaximum h = new FindMaximum();
        int[] a = { 1, 3, 5 };
        System.out.println("max=\" + h.findMaximum(a));
    }

    int findMaximum(int[] a) {
        int result = a[0];
        for (int i = 0; i < a.length; ++i) {
            if (result < a[i]) {
                result = a[i];
            }
        }
        System.out.println("i=\" + i + ", result=\" + result);
    }

    return result;
}
```

```

<table>
<thead>
<tr>
<th>i</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

max=5
```

3\(\tau_{\text{fetch}} + \tau[\cdot] + \tau_{\text{store}}\)

\(\tau_{\text{fetch}} + \tau_{\text{store}}\)

\(2\tau_{\text{fetch}} + \tau\text{<} n\)

\(2\tau_{\text{fetch}} + \tau + \tau_{\text{store}}\) \(\text{(n-1)}\)

\((4\tau_{\text{fetch}} + \tau[\cdot] + \tau\text{<}) \text{ (n-1)}\)

\((3\tau_{\text{fetch}} + \tau[\cdot] + \tau_{\text{store}}) ?\)

\(\tau_{\text{fetch}} + \tau_{\text{store}}\)
Simplified Model ... More Simplification

- All timing parameters are expressed in units of clock cycles. In effect, $T=1$.
- The proportionality constant, k, for all timing parameters is assumed to be the same: $k=1$.
public class FindMaximum {

 public static void main(String[] args) {
 FindMaximum h = new FindMaximum();
 int[] a = {1, 3, 5};
 System.out.println("max="+h.findMaximum(a));
 }

 int findMaximum(int[] a) {
 int result = a[0];
 for (int i = 0; i < a.length; ++i) {
 if (result < a[i]) {
 result = a[i];
 }
 System.out.println("i="+i+" result="+result);
 }
 return result;
 }
}

detailed
2 \(3\tau_{\text{fetch}} + \tau[.] + \tau_{\text{store}}\)
3a \(\tau_{\text{fetch}} + \tau_{\text{store}}\)
3b \((2\tau_{\text{fetch}} + \tau<)\ n\)
3c \((2\tau_{\text{fetch}} + \tau+ + \tau_{\text{store}})\ (n-1)\)
4 \((4\tau_{\text{fetch}} + \tau[.] + \tau<)\ (n-1)\)
6 \((3\tau_{\text{fetch}} + \tau[.] + \tau_{\text{store}})\ ?\)
9 \(\tau_{\text{fetch}} + \tau_{\text{store}}\)

simple
2 5
3a 2
3b (3)n
3c (4)(n-1)
4 (6)(n-1)
6 (5)\
9 2

i=0 result=1
i=1 result=3
i=2 result=5
max=5
Simplified Model > Algorithm 1...

Geometric Series Sum

```java
public class GeometrikSeriesSum {

    public static void main(String[] args) {
        System.out.println("1, 4: " + geometricSeriesSum(1, 4));
        System.out.println("2, 4: " + geometricSeriesSum(2, 4));
    }

    public static int geometricSeriesSum(int x, int n) {
        int sum = 0;
        for (int i = 0; i <= n; ++i) {
            int prod = 1;
            for (int j = 0; j < i; ++j) {
                prod *= x;
            }
            sum += prod;
        }
        return sum;
    }

    x=1, n=4: a4=5
    x=2, n=4: a4=31
}
```

Output

```
1 2 2
3a 2
3b 3(n+2)
3c 4(n+1)
4 2(n+1)
5a 2(n+1)
5b 3 \sum (i+1)
5c 4 \sum i
6 4 \sum \sum i
7
8 4(n+1)
9
10 2
11
12
```

Total \(\frac{11}{2} n^2 + \frac{47}{2} n + 27 \)
Simplified Model > Algorithm_SumHorner
Geometric Series Sum ...

```
public class GeometrikSeriesSumHorner {

    public static void main(String[] args) {
        System.out.println("1, 4: "+ geometricSeriesSum(1, 4));
        System.out.println("2, 4: "+ geometricSeriesSum(2, 4));
    }

    public static int geometricSeriesSum(int x, int n) {
        int sum = 0;
        for (int i = 0; i <= n; ++i) {
            sum = sum * x + 1;
        }
        return sum;
    }

    Observe:
    Let sum = a_i,
    a0=0
    a1=1, a2=x+1, a3=x²+x+1,... an=x^n+x^{n-1}+x^{n-2}+...+x+1
    x=1, n=4, output:1+1+1+1+1=5
    x=2, n=4, output:2^0+2^1+2^2+2^3+2^4=31
    x=1, n=4: a4=5
    x=2, n=4: a4=31
```

\[
\sum_{i=0}^{n} x^i
\]
Simplified Model > Algorithm_SumPower Geometric Series Sum ...

\[\sum_{i=0}^{n} x^{i} \]

```java
public class GeometrikSeriesSumPower {

    public static void main(String[] args) {
        System.out.println("1, 4: " + powerA(1, 4));
        System.out.println("1, 4: " + powerB(1, 4));
        System.out.println("2, 4: " + powerA(2, 4));
        System.out.println("2, 4: " + powerB(2, 4));
    }

    // Method to calculate power using iteration
    public static int powerA(int x, int n) {
        int result = 1;
        for (int i = 1; i <= n; ++i) {
            result *= x;
        }
        return result;
    }

    // Method to calculate power using recursion
    public static int powerB(int x, int n) {
        if (n == 0) {
            return 1;
        } else if (n % 2 == 0) { // n is even
            return powerB(x * x, n / 2);
        } else { // n is odd
            return x * powerB(x * x, n / 2);
        }
    }
}
```

<table>
<thead>
<tr>
<th>n</th>
<th>0 < n, n even</th>
<th>0 < n, n is odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3, 1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>2, 1</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>- , 5</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>- , 10 + T((\lfloor n/2 \rfloor))</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>- , -</td>
<td>12 + T((\lfloor n/2 \rfloor))</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>18 + T((\lfloor n/2 \rfloor))</td>
</tr>
</tbody>
</table>

\[x^n = \begin{cases}
1 & n=0 \\
(x^2)^{\lfloor n/2 \rfloor} & 0<n, n \text{ is even} \\
x(x^2)^{\lfloor n/2 \rfloor} & 0<n, n \text{ is odd}
\end{cases} \]
Let \(n = 2^k \) for some \(k > 0 \).

Since \(n \) is even, \(\lfloor n/2 \rfloor = n/2 = 2^{k-1} \).

For \(n = 2^k \), \(T(2^k) = 18 + T(2^{k-1}) \).

Using repeated substitution

\[
T(2^k) = 18 + T(2^{k-1}) \\
= 18 + 18 + T(2^{k-2}) \\
= 18 + 18 + 18 + T(2^{k-3}) \\
\vdots \\
= 18j + T(2^{k-j})
\]

Substitution stops when \(k = j \)

\(T(2^k) = 18k + T(1) \)

\(= 18k + 20 + T(0) \)

\(= 18k + 20 + 5 \)

\(= 18k + 25. \)

\(n = 2^k \) then \(k = \log_2 n \)

\[
T(2^k) = 18 \log_2 n + 25
\]

\[x^n = \begin{cases} 18 + T(\lfloor n/2 \rfloor) & 0 < n \end{cases} \]
Suppose \(n = 2^k - 1 \) for some \(k > 0 \).

Since \(n \) is odd, \(\lfloor n/2 \rfloor = \lfloor (2^k - 1)/2 \rfloor = (2^{k-2})/2 = 2^{k-1} \)

For \(n = 2^k - 1 \),
\[
T(2^k - 1) = 20 + T(2^{k-1} - 1), \quad k > 1.
\]

Using repeated substitution
\[
T(2^k - 1) = 20 + T(2^{k-1} - 1) \\
= 20 + 20 + T(2^{k-2} - 1) \\
= 20 + 20 + 20 + T(2^{k-3} - 1) \\
\vdots \\
= 20j + T(2^{k-j} - 1)
\]

Substitution stops when \(k = j \)
\[
T(2^k - 1) = 20k + T(2^0 - 1) \\
= 20k + T(0) \\
= 20k + 5.
\]

n = 2^k - 1 then \(k = \log_2(n+1) \)

\[
T(n) = 20 \log_2(n+1) + 5
\]

Therefore, \(\text{powerB} \)
\[
\begin{cases}
5 & n=0 \\
18 + T(\lfloor n/2 \rfloor) & 0 < n, \ n \text{ is even} \\
20 + T(\lfloor n/2 \rfloor) & 0 < n, \ n \text{ is odd}
\end{cases}
\]

Average: \(19(\lfloor \log_2(n+1) \rfloor + 1) + 18 \)
```java
public class GeometrikSeriesSumPower {

    public static void main(String[] args) {
        System.out.println("s 2, 4: " + geometrikSeriesSumPower (2, 4));
    }

    public static int geometrikSeriesSumPower (int x, int n) {
        return powerB(x, n + 1) - 1 / (x - 1);
    }

    public static int powerB(int x, int n) {
        if (n == 0) {
            return 1;
        } else if (n % 2 == 0) { // n is even
            return powerB(x * x, n / 2);
        } else { // n is odd
            return x * powerB(x * x, n / 2);
        }
    }
}
```

Output:

```
x=2, n=4, a4=31
X must be power of 2
```
Comparison of 3 Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>$\frac{11}{2}n^2 + \frac{47}{2}n + 27$</td>
</tr>
<tr>
<td>Horner</td>
<td>$13n + 22$</td>
</tr>
<tr>
<td>Power</td>
<td>$19(\lfloor \log_2(n+1) \rfloor + 1) + 18$</td>
</tr>
</tbody>
</table>

![Graph comparing different algorithms](graph.png)
Counting Primitive Operations for Pseudocodes

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Algorithm $arrayMax(A, n)$

<table>
<thead>
<tr>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>$2n$</td>
</tr>
<tr>
<td>$2(n - 1)$</td>
</tr>
<tr>
<td>$2(n - 1)$</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Total $8n - 2$
Estimating Running Time

Algorithm \textit{arrayMax} executes $8n - 2$ primitive operations in the worst case. Define:

\begin{itemize}
 \item a = Time taken by the fastest primitive operation
 \item b = Time taken by the slowest primitive operation
\end{itemize}

Let $T(n)$ be worst-case time of \textit{arrayMax}. Then

\begin{align*}
 a(8n - 2) &\leq T(n) \leq b(8n - 2)
\end{align*}

Hence, the running time $T(n)$ is bounded by two linear functions
Asymptotic Algorithm Analysis

The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:
- We find the worst-case number of primitive operations executed as a function of the input size.
- We express this function with big-Oh notation.

Example:
- We determine that algorithm $arrayMax$ executes at most $8n - 2$ primitive operations.
- We say that algorithm $arrayMax$ “runs in $O(n)$ time.”

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$
- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm \textit{arrayMax}
Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms

- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function
Big-Oh Notation

Given functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(O(g(n)) \) if there are positive constants \(c \) and \(n_0 \) such that
\[
f(n) \leq cg(n) \quad \text{for} \quad n \geq n_0
\]

Example: \(2n + 10 \) is \(O(n) \)
- \(2n + 10 \leq cn \)
- \((c - 2) n \geq 10 \)
- \(n \geq 10/(c - 2) \)
- Pick \(c = 3 \) and \(n_0 = 10 \)
Big-Oh Example

Example: the function n^2 is not $O(n)$

- $n^2 \leq cn$
- $n \leq c$

The above inequality cannot be satisfied since c must be a constant.
More Big-Oh Examples

7n-2
7n-2 is O(n)
need c > 0 and n₀ ≥ 1 such that 7n-2 ≤ c•n for n ≥ n₀
this is true for c = 7 and n₀ = 1

3n³ + 20n² + 5
3n³ + 20n² + 5 is O(n³)
need c > 0 and n₀ ≥ 1 such that 3n³ + 20n² + 5 ≤ c•n³ for n ≥ n₀
this is true for c = 4 and n₀ = 21

3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n₀ ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n₀
this is true for c = 8 and n₀ = 2
Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement "\(f(n) \) is \(O(g(n)) \)" means that the growth rate of \(f(n) \) is no more than the growth rate of \(g(n) \).
- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th></th>
<th>(f(n)) is (O(g(n)))</th>
<th>(g(n)) is (O(f(n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(n)) grows more</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(f(n)) grows more</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Analysis of Algorithms
More Example

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$g(n)$</th>
<th>$f(n) = O(g(n))$</th>
<th>$g(n) = O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10n$</td>
<td>$n^2 - 10n$</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>n^3</td>
<td>$n^2 \log n$</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>$n + \log n$</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>$\log n$</td>
<td>\sqrt{n}</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>$\ln n$</td>
<td>$\log n$</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$\log(n + 1)$</td>
<td>$\log n$</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$\log \log n$</td>
<td>$\log n$</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>2^n</td>
<td>10^n</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>n^m</td>
<td>m^n</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>$\cos(n\pi/2)$</td>
<td>$\sin(n\pi/2)$</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>n^2</td>
<td>$(n \cos n)^2$</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Example

\[f(n) = \sqrt{n} \quad g(n) = \log n \quad f(n) + g(n) \]

\[
\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{\log n}{\sqrt{n}} \\
= \lim_{n \to \infty} \frac{1/n}{1/(2\sqrt{n})}, \quad \text{(L’Hôpital’s rule)} \\
= \lim_{n \to \infty} 2/\sqrt{n} \\
= 0.
\]

\[f(n) + g(n) = O(f(n)) = O(\sqrt{n}). \]

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \quad \text{Stirlings approximation} \]
Big-Oh Rules

Theorem

Consider polynomial \(f(n) = \sum_{i=0}^{m} a_i n^i \) where \(a_m > 0 \).

Then \(f(n) = O(n^m) \). i.e.,

1. Drop lower-order terms
2. Drop constant factors

- **Use the smallest possible class of functions**
 - Say “\(2n \) is \(O(n) \)” instead of “\(2n \) is \(O(n^2) \)”

- **Use the simplest expression of the class**
 - Say “\(3n + 5 \) is \(O(n) \)” instead of “\(3n + 5 \) is \(O(3n) \)”
Big-Oh Rules-2

- $\log^k n = O(n)$ for any constant $k \in \mathbb{Z}^+$
- $f(n) = O(f(n))$
- $c \cdot O(f(n)) = O(f(n))$
- $O(f(n)) + O(f(n)) = O(f(n))$
- $O(O(f(n))) = O(f(n))$
- $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$
Relatives of Big-Oh

- **big-Omega**
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

- **big-Theta**
 - $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that $c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n)$ for $n \geq n_0$
Upper Bound on $f(n)$

Lower Bound on $f(n)$
$\Theta(g(n))$

$c_1 \times g(n)$ is an *Upper Bound* on $f(n)$

$c_2 \times g(n)$ is a *Lower Bound* on $f(n)$
$O(f(n))$ and $\Omega(g(n))$
Intuition for Asymptotic Notation

Big-Oh
- f(n) is $O(g(n))$ if f(n) is asymptotically \textbf{less than or equal} to g(n)

big-Omega
- f(n) is $\Omega(g(n))$ if f(n) is asymptotically \textbf{greater than or equal} to g(n)

big-Theta
- f(n) is $\Theta(g(n))$ if f(n) is asymptotically \textbf{equal} to g(n)
Example Uses of the Relatives of Big-Oh

- **$5n^2$ is $\Omega(n^2)$**

 $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 Let $c = 5$ and $n_0 = 1$

- **$5n^2$ is $O(n^2)$**

 $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) < c \cdot g(n)$ for $n \geq n_0$

 Let $c = 5$ and $n_0 = 1$

- **$5n^2$ is $\Theta(n^2)$**

 $f(n)$ is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$

 Let $c = 5$ and $n_0 = 1$
Comparison of Orders

$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$
Comparison of Orders

$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$
O(n) Analysis of Running Time

Example

Worst-case running time if statement 5 executes all the time...

```
int findMaximum(int[] a) {
    int result = a[0];
    for (int i = 1; i < a.length; ++i) {
        if (result < a[i]) {
            result = a[i];
        }
    }
    return result;
}
```

Best-case running time if statement 5 never executes...

On-the-average running time if statement 5 executes half of the time????
Algorithm Complexity as a function of size n

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input of size n</th>
<th>Basic operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching a list</td>
<td>lists with n elements</td>
<td>comparison</td>
</tr>
<tr>
<td>Sorting a list</td>
<td>lists with n elements</td>
<td>comparison</td>
</tr>
<tr>
<td>Multiplying two</td>
<td>two n-by-n matrices</td>
<td>multiplication</td>
</tr>
<tr>
<td>matrices</td>
<td>n-digit number</td>
<td>division</td>
</tr>
<tr>
<td>Prime factorization</td>
<td>polynomial of degrees</td>
<td>multiplication</td>
</tr>
<tr>
<td>Evaluating a polynomial</td>
<td>n</td>
<td>accessing a node</td>
</tr>
<tr>
<td>Traversing a tree</td>
<td>tree with n nodes</td>
<td>moving a disk</td>
</tr>
<tr>
<td>Towers of Hanoi</td>
<td>n disks</td>
<td></td>
</tr>
</tbody>
</table>

- A comparison-based algorithm for searching or sorting a list is based on
 - making comparisons involving list elements
 - then making decisions based on these comparisons.
Quiz-

\[T(n) = 2T(n-1) + n, \quad n > 0 \]
Quiz- Solution

\[
T(n) = 2T(n-1) + n, \quad n > 0
\]
\[
= 2(2T(n-2) + n - 1) + n
\]
\[
= 2(2(2T(n-3) + n - 2) + n - 1) + n
\]
\[\vdots\]
\[
= 2^k T(n-k) + \sum_{i=0}^{k-1} (n-i)2^i
\]
\[\vdots\]
\[
= 2^n T(0) + \sum_{i=0}^{n-1} (n-i)2^i, \quad (n-k) = 0
\]
\[
= 2^n + 2 \cdot 2^n - n - 2
\]
\[
= 3 \cdot 2^n - n - 2.
\]