1) (50 points) Let \(G = \{T, N, S, P\} \) be a Context Free Grammar with \(T = \{a, b\} \), \(N = \{X\} \) and \(S = X \), and the production rules \(P \) are given by:

\[
X \rightarrow aXb | aX | \epsilon
\]

The symbol \(\epsilon \) indicates the empty string, i.e. it serves as a termination condition for the recursive rule.

\begin{enumerate}
 \item Give a brief description of the language generated by this grammar.
 \item Prove that \(G \) is an ambiguous grammar by finding an output of \(G \), which can be generated using two different parse trees. Draw the parse trees.
 \item Find an unambiguous grammar that recognizes the same language.
\end{enumerate}

2) (50 points) Some simple low level virtual machine instructions that could be used for operational semantics are given below.

\begin{verbatim}
ident = var
ident = ident + 1
ident = ident - 1
goto label
if var relop var goto label
\end{verbatim}

\begin{enumerate}
 \item Using the simple virtual machine instructions given above, write the do-while statement of java in terms of operational semantics.
 \item Using the simple virtual machine instructions given above, convert the following code piece to low level language instructions.
 \begin{verbatim}
 while(a<b)
 {
 c--; if(c<=0)
 while(b>c)
 b--;
 }
 \end{verbatim}
 \item Define a denotational semantics for the language of octal (base 8) numerals. Use the definition to find the value of “672 (mod 8)” in mod 10.
\end{enumerate}