CMPE 160: Introduction to Object Oriented Programming

Lists, Stacks, and Queues

These are the slides of the textbook by Mark Allen Weiss, modified/corrected as necessary.
LISTS
An ADT

- A set of objects
- A set of operations

- Same set of objects, different sets of operations \(\rightarrow\) different ADTs

- ADTs are implemented using classes, hiding implementation details: encapsulation
List Abstraction

• Definition:
 - A linear configuration of elements, called nodes.
Characteristics

• Insert and delete nodes in any order
• The nodes are connected
• Each node has **two** components
 - Information (data)
 - Link to the next node
• The nodes are accessed through the links between them
Predecessor/Successor

- For each node the node that is in front of it is called **predecessor**
- The node that is after it is called **successor**
Terminology

• **Head (front, first node):**
 - The node without any predecessor, the node that starts the lists

• **Tail (end, last node):**
 - The node that has no successor, the last node in the list

• **Current node:** The node being processed.
 - From the current node, we can access the next node

• **Empty list:** No nodes exist
Basic operations

- To create/destroy a list
- To expand/shrink the list
- Read/Write operations
- Changing the current node (moving along the list)
- To report current position in the list
- To report status of the list
ADT List Notation

L - list

e - item of the same type as the information part of an element (a node) in the list

b - boolean value
Operations in ADT Notation

Insert(L,e)

• Inserts a node with information e before the current position

Delete(L)

• Deletes the current node in L, the current position indicates the next node.

RetrieveInfo(L) → e

• Returns the information in the current node.
Insertion and Deletion

A. Insertion

To insert a node X between the nodes A and B:

- Create a link from X to B
- Create a link from A to X
Insertion
Insertion and Deletion

B. Deletion

To delete a node X between A and B:
- Create a link from A to B
- Remove node X
Deletion
Node Linking

1. Single linked lists:
 Each node contains a link only to the next node.

2. Doubly linked lists:
 Each node contains two links - to the previous and to the next node.

3. Circular lists:
 The tail is linked to the head.
List Implementation

- **Static** - using an array
- **Dynamic** - using linear nodes
Array Implementation

Two parallel arrays are used:

- **Index array** - the number stored in the i^{th} element shows the index of the "next" node, i.e. node that follows the i^{th} node.

- **Data array** - used to store the informational part of the nodes.
Array Implementation

<table>
<thead>
<tr>
<th>Index</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>head</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>tail</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
STACKS
Stacks

• Definition:
 • The last stored element is the first to be accessed
 • (LIFO: last in - first out)
Basic operations

• **Push**: Store a data item at the top of the stack

• **Pop**: Retrieve a data item from the top of the stack
ADT Definition of STACK

- **Notation:**

 - S: stack
 - e: item of same type as the elements of S
 - b: boolean value
Operations

Init_STACK(S)
Procedure to initialize S to an empty stack

Destroy_STACK(S)
Procedure to delete all elements in S
Operations

Stack_Empty(S) \rightarrow b

Boolean function that returns TRUE if S is empty.

Stack_Full(S) \rightarrow b

Boolean function that returns TRUE if S is full.
Operations

Push(S,e)

Procedure to place an item e into S (if there is room, i.e. S is not full)

Pop(S) → e

Procedure to take the last item stored in S (this item is called also - top element) if S is not empty
Example

• A procedure to replace the elements of a nonempty stack, assuming they are of type integers, with their sum.

• **Pre:** A nonempty stack with elements of type integers.

• **Post:** S contains only one element - the sum of previously stored elements.
Algorithm

1. \(e_1 \leftarrow \text{Pop}(S) \)
2. \textbf{while stack is not empty repeat}
 2.1. \(e_2 \leftarrow \text{pop}(S) \)
 2.2. \(\text{push}(S, e_1+e_2) \)
 2.3. \(e_1 \leftarrow \text{pop}(S) \)
3. \(\text{push}(S,e_1) \)
QUEUES
Queues

- **Definition**: A sequence of elements of the same type.
- The first stored element is first accessible.
- The structure is known also under the name **FIFO - first in first out** or **FCFS - first come first served**.
Basic operations

• **EnQueue**: store a data item at the end of the queue

• **DeQueue**: retrieve a data item from the beginning of the queue
ADT Definition of QUEUE

• Notation:
 \(Q \) queue
 \(e \) item of same type as the elements of \(Q \)
 \(b \) boolean value
Operations

Init _Queue*(Q)*

Initialize Q to an empty queue

Queue _Empty*(Q) → b*

Boolean function that returns TRUE is Q is empty

Queue _Full*(Q) → b*

Boolean function that returns TRUE if Q is full: array-based implementations
Operations

\textbf{EnQueue}(Q, e)

Procedure to place an item \(e\) into \(Q\) at the end (if \(Q\) is not full)

\textbf{DeQueue}(Q) \rightarrow e

Procedure to take the first item stored in \(Q\) if \(Q\) is not empty
Problem 1

- **Append Queue(Q,P):** A procedure to append a queue P onto the end of a queue Q, leaving P empty.

- **Pre:** queue P and queue Q, initialized

- **Post:** Q contains all elements originally in Q, followed by the elements that were in P in same order. P is empty.

- Design an algorithm to solve the problem
Problem 2

- **Reverse.Queue(Q):** A procedure to reverse the elements in a queue Q
- **Pre:** queue Q, initialized
- **Post:** Q contains all elements re-written in reverse order

- Design a non-recursive algorithm using a stack
- Design a recursive algorithm
- Find the complexity of the algorithms
Solutions to Problem 2:
A. Non-recursive

Init_Stack(S)

While not Queue_Empty(Q)
 e ← DeQueue(Q)
 Push(S,e)

While not Stack_Empty(S)
 e ← Pop(S)
 EnQueue(Q,e)

Complexity \(O(N)\)

N - the number of elements in Q
Solutions to Problem 2: B. Recursive

Reverse_Queue(Q):

If not Queue_Empty(Q)
 e ← DeQueue(Q)
 Reverse_Queue(Q)
 EnQueue(Q, e)
return

Complexity O(N)
N - the number of elements in Q
Problem 3

- **Append.Reverse.Queue(Q,P):** Append a queue P in reverse order onto the end of a queue Q, leaving P empty.

- **Pre:** P and Q initialized (possibly empty)

- **Post:** Q contains all elements originally in Q, followed by the elements that were in P in reverse order. P is empty

- **Design a recursive algorithm**