Hashing

- What is Hashing?
- Direct Access Tables
- Hash Tables

Hashing - Basic Idea

- A mapping between the search keys and indices - efficient searching into an array
- Each element is found with one operation only

Hashing Example

Example:
- 1000 students
 - Identification number between 0 and 999
 - Use an array of 1000 elements.
- TC Kimlik No of each student a 11-digit number
 - Much more elements than the number of the students - a great waste of space
The Approach

• Directly referencing records in a table using arithmetic operations on keys to map them onto table addresses

• Hash function: Function that transforms the search key into a table address

Direct-Address Tables

• The most elementary form of hashing

• Assumption: Direct one-to-one correspondence between the keys and numbers 0, 1, ..., m-1 (m - not very large)

• Array A[m]: Each position (slot) in the array contains a pointer to a record, or NULL

• Cost: The size of the array we need is determined by the largest key. Not very useful if there are only a few keys (i.e., the array is sparse)

Hash Functions

• Transform the keys into numbers within a predetermined interval to be used as indices in an array (table, hash table) to store the records

Hash Functions - Numerical Keys

• Keys - numbers

• If M is the size of the array, then
 \[h(key) = key \mod M \]

• This will map all the keys into numbers within the interval \([0 \ldots (M-1)]\)
Hash Functions - Character Keys

• Keys - strings of characters

• Treat the binary representation of a key as a number, and then apply the hash function

How Keys are Treated as Numbers

• If each character is represented with m bits, then the string can be treated as base-m number

Example

A K E Y :
00001 01011 00101 11001 =

$1 \cdot 32^3 + 11 \cdot 32^2 + 5 \cdot 32^1 + 25 \cdot 32^0 = 44271$

Each letter is represented by its position in the alphabet. E.g., K is the 11-th letter, and its representation is 01011 (11 in decimal)

Long Keys

• If the keys are very long, an overflow may occur

• A solution to this problem is to apply the Horner’s method in computing the hash function
Horner’s Method

\[a_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x^1 + a_0x^0 = \]
\[x((\ldots x(a_n + a_{n-1}) + a_{n-2}) + \ldots) + a_1 \] + \(a_0 \)

\[4x^5 + 2x^4 + 3x^3 + x^2 + 7x^1 + 9x^0 = \]
\[x((x((x((4 + 2) + 3) + 1) + 7) + 9) \]

The polynomial can be computed by alternating the multiplication and addition operations

Example

<table>
<thead>
<tr>
<th>V E R Y L O N G K E Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>10110 0010 10010 11000 01101 01111 01110 01011 00101 11001</td>
</tr>
<tr>
<td>22 5 18 25 12 15 14 7 11 5 25</td>
</tr>
</tbody>
</table>

\[(((((((22 \times 32 + 5)32 + 18)32 + 25)32 + 12)32 + 15)32 + 14)32 + 7)32 + 11)32 + 5)32 + 25 \]

Compute the hash function by applying the \texttt{mod} operation at each step, thus avoiding overflowing

\[h_0 = (22 \times 32 + 5) \mod M \]
\[h_1 = (h_0 \times 32 + 18) \mod M \]
\[h_2 = (h_1 \times 32 + 25) \mod M \]

\textbf{Code}

```c
int hash32(char[] name, int tbl_size){
    key_length = name.length;
    int h = 0;

    for (int i=0; i<key_length; i++)
        h = (32*h+name[i]) % tbl_size;
    return h;
}
```
Hash Tables

• **Index**: Integer generated by a hash function between 0 and \(M-1 \)

• Initially, blank slots
 - Sentinel value, or a special field in each slot

Hash Tables

• **Insert** - hash function to generate an address

• **Search** for a key in the table - the same hash function is used

Size of the Table

• **Table size** \(M \): Different from the number of records \(N \)

• **Load factor**: \(\lambda = N/M \)

• \(M \) must be prime to ensure even distribution of keys

COLLISION RESOLUTION:
SEPARATE CHAINING
Collision Resolution

- Collision Resolution
 - Separate Chaining
 - Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
 - Rehashing
- Extendible Hashing

Hash Tables - Collision

- Problem: Many-to-one mapping
- A potentially huge set of strings → a small set of integers

- Collision: Having a second key into a previously used slot

- Collision resolution: Deals with keys that are mapped to same slots

Separate Chaining

- Invented by H. P. Luhn, an IBM engineer, in January 1953

- Idea: Keys hashing to same slot are kept in linked lists attached to that slot

- Useful for highly dynamic situations, where the number of the search keys cannot be predicted in advance

Example

Key: A S E A R C H I N G E X A M P L E
Hash: 1 8 5 1 7 3 8 9 3 7 5 2 1 2 5 1 5
(M = 11)

Separate chaining:

0 1 2 3 4 5 6 7 8 9 10
= L M N E G H I =
A X C P R S =
A = E =
A E =
Separate Chaining - Length of Lists

- \(N \) - number of keys
- \(M \) - size of table
- \(N/M \) - average length of the lists

Separate Chaining - Search

- Unsuccessful searches go to the end of some list
- Successful searches are expected to go half way down some list

Separate Chaining - Choosing Table Size M

- Relatively small so as not to use up a large area of contiguous memory
- But large enough so that the lists are short for more efficient sequential search

Separate Chaining - Other Chaining Options

- Keep the lists ordered - useful if there are much more searches than inserts, and if most of the searches are unsuccessful
- Represent the chains as binary search tree. Extra effort needed - not efficient
Separate Chaining - Advantages and Disadvantages

• Advantages
 - Used when memory space is a concern
 - Easily implemented

• Disadvantages
 - Unevenly distributed keys - long lists:
 Search time increases, many empty spaces in the table

Collision Resolution

• Collision Resolution
 - Separate Chaining
 - Open Addressing
 • Linear Probing
 • Quadratic Probing
 • Double Hashing
 - Rehashing
• Extendible Hashing

COLLISION RESOLUTION: OPEN ADDRESSING EXTENDIBLE HASHING

Open Addressing

• Invented by A. P. Ershov and W. W. Peterson in 1957, independently

• Idea: Store collisions in the hash table

• Table size: Must be at least twice the number of the records
Open Addressing

If collision occurs, next probes are performed following the formula:

\[h_i(x) = (\text{hash}(x) + f(i)) \mod \text{Table_Size} \]

where:
- \(h_i(x) \) is an index in the table to insert \(x \)
- \(\text{hash}(x) \) is the hash function
- \(f(i) \) is the collision resolution function.
- \(i \) is the current attempt to insert an element

Open Addressing

- **Problems with delete:** A special flag is needed to distinguish deleted from empty positions
- Necessary for the search function - if we come to a “deleted” position, the search has to continue as the deletion might have been done after the insertion of the sought key
 - The sought key might be further in the table

Linear Probing

- **f(i) = i**

Insert:
- If collision - probe the next slot
- If unoccupied - store the key there
- If occupied - continue probing next slot

Search:
- a) Match - successful search
- b) Empty position - unsuccessful search
- c) Occupied and no match - continue probing

If end of the table - continue from the beginning

Example

Key: A S E A R C H I N G E X A M P L E
Hash: 1 0 5 1 18 3 8 9 14 7 5 5 1 13 16 12 5

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>S A E R C G H I N E X A M P L E</td>
</tr>
<tr>
<td>* A</td>
</tr>
<tr>
<td>* C G H I N</td>
</tr>
<tr>
<td>* E</td>
</tr>
<tr>
<td>* * * * * X</td>
</tr>
<tr>
<td>* * * A L M P</td>
</tr>
<tr>
<td>* * * * * * E</td>
</tr>
<tr>
<td>* - unsuccessful attempts</td>
</tr>
</tbody>
</table>
Linear Probing

- Disadvantage: “Primary clustering”
- Large clusters tend to build up
- Expected number of probes:
 - For insertions and unsuccessful searches
 \[\frac{1}{2}(1+1/(1-\lambda)^2) \]
 - For successful searches
 \[\frac{1}{2}(1+1/(1-\lambda)) \]

Quadratic Probing

- Use a quadratic function to compute the next index in the table to be probed
- The idea here is to skip regions in the table with possible clusters

\[f(i) = i^2 \]

Quadratic Probing

- In linear probing we check the \(i^{th} \) position. If it is occupied, we check the \(i+1^{st} \) position, next \(i+2^{nd} \) etc.

- In quadric probing, if the \(i^{th} \) position is occupied we check the \(i+1^{st} \), next we check \(i+4^{th} \), next \(i+9^{th} \), etc.

Double Hashing

- Purpose: To overcome the disadvantage of clustering
- A second hash function to get a fixed increment for the “probe” sequence
 - \(\text{hash}_2 \) should never evaluate to 0

- \(\text{hash}_2(x) = R - (x \mod R) \)
 - \(R \): Prime, smaller than table size
Rehashing

• Table size: $M > N$

• For small load factor, the performance is much better than for $\lambda = N/M$ close to one

• Best choice: $\lambda = 0.5$

• When $\lambda > 0.75$: rehashing

Extendible Hashing

• External storage
 - N records in total to store
 - M records in one disk block

• No more than two blocks are examined
Example
• 4 disk blocks, each can contain 3 records
• 4 groups of keys according to the first two bits

<table>
<thead>
<tr>
<th>directory</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>01001</td>
<td>10001</td>
<td>11000</td>
<td></td>
</tr>
<tr>
<td>00100</td>
<td>01010</td>
<td>10100</td>
<td>11010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example (cont’ d)
• New key to be inserted: 01011
• Block2 is full, so we start considering 3 bits

<table>
<thead>
<tr>
<th>directory</th>
<th>000001</th>
<th>010</th>
<th>011</th>
<th>100/101</th>
<th>110/111</th>
</tr>
</thead>
<tbody>
<tr>
<td>(still on same block)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00010</td>
<td>01001</td>
<td>01100</td>
<td>10001</td>
<td>11000</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>01010</td>
<td>-----</td>
<td>11010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00100</td>
<td>01011</td>
<td>10100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extendible Hashing
Size of the directory : 2^D

$2^D = O(N^{1+1/M} / M)$

D - the number of bits considered
N - number of records
M - number of disk blocks

Conclusion 1
• Hashing is a search method used when
 - sorting is not needed
 - access time is the primary concern
Conclusion 2

- **Time-space trade-off:**
 - No memory limitations - Use the key as a memory address (minimum amount of time)
 - No time limitations - Use sequential search (minimum amount of memory)

- Hashing: *Gives a balance between these two extremes - a way to use a reasonable amount of both memory and time*

Conclusion 3

- To choose a good hash function is an art
- The choice depends on the **nature of keys** and the **distribution** of the numbers corresponding to the keys

Conclusion 4

- Best course of action:
 - **Separate chaining:** If the number of records is not known in advance
 - **Open addressing:** If the number of the records can be predicted and there is enough memory available