An ADT
- A set of objects
- A set of operations
- Same set of objects, different sets of operations \rightarrow different ADTs
- ADTs are implemented using classes, hiding implementation details:
 encapsulation

List Abstraction
- Definition:
 - A linear configuration of elements, called nodes.
Characteristics

- Insert and delete nodes in any order
- The nodes are **connected**
- Each node has **two** components
 - Information (data)
 - Link to the next node
- The nodes are accessed through the links between them

Predecessor/Successor

- For each node the node that is in front of it is called **predecessor**
- The node that is after it is called **successor**

Terminology

- **Head (front, first node):**
 - The node without any predecessor, the node that starts the lists.
- **Tail (end, last node):**
 - The node that has no successor, the last node in the list.
- **Current node:** The node being processed.
 - From the current node we can access the next node.
- **Empty list:** No nodes exist.

Basic operations

- To create/destroy a list
- To expand/shrink the list
- Read/Write operations
- Changing the current node (moving along the list)
- To report current position in the list
- To report status of the list
ADT List Notation

L - list

e - item of the same type as the information part of an element (a node) in the list

b - boolean value

Operations in ADT Notation

Insert(L,e)

- Inserts a node with information e before the current position

Delete(L)

- Deletes the current node in L, the current position indicates the next node.

RetrieveInfo(L) → e

- Returns the information in the current node.

Insertion and Deletion

A. Insertion

To insert a node X between the nodes A and B:

- Create a link from X to B
- Create a link from A to X

Insertion
Insertion and Deletion

B. Deletion

To delete a node X between A and B:
- Create a link from A to B
- Remove node X

Deletion

Node Linking

1. Single linked lists:
 Each node contains a link only to the next node.
2. Doubly linked lists:
 Each node contains two links – to the previous and to the next node.
3. Circular lists:
 The tail is linked to the head.

List Implementation

- Static – using an array
- Dynamic – using linear nodes
Array Implementation

Two parallel arrays are used:

- **Index array** - the number stored in the \(i^{th} \) element shows the index of the "next" node, i.e. node that follows the \(i^{th} \) node.

- **Data array** - used to store the informational part of the nodes.

Stacks

- **Definition:**
 - The last stored element is the first to be accessed
 - (LIFO: last in - first out)
Basic operations

• **Push**: Store a data item at the top of the stack

• **Pop**: Retrieve a data item from the top of the stack

ADT Definition of STACK

• **Notation**:
 - S : stack
 - e : item of same type as the elements of S
 - b : boolean value

Operations

- **Init_Stack(S)**: Procedure to initialize S to an empty stack

- **Destroy_Stack(S)**: Procedure to delete all elements in S

Operations

- **Stack_Empty(S) $\rightarrow b$**: Boolean function that returns TRUE if S is empty.

- **Stack_Full(S) $\rightarrow b$**: Boolean function that returns TRUE if S is full.
Operations

Push(S,e)
Procedure to place an item e into S (if there is room, i.e. S is not full)

Pop(S) → e
Procedure to take the last item stored in S (this item is called also - top element) if S is not empty

Example

• A procedure to replace the elements of a nonempty stack, assuming they are of type integers, with their sum.

 • Pre: A nonempty stack with elements of type integers.

 • Post: S contains only one element - the sum of previously stored elements.

Algorithm

1. e1 ← Pop(S)
2. while stack is not empty repeat
 2.1. e2 ← pop(S)
 2.2. push(S, e1+e2)
 2.3. e1 ← pop(S)
3. push(S,e1)

QUEUES
Queues

- **Definition:** A sequence of elements of the same type.
- The first stored element is first accessible.
- The structure is known also under the name FIFO - first in first out or FCFS - first come first served

Basic operations

- **EnQueue:** store a data item at the end of the queue
- **DeQueue:** retrieve a data item from the beginning of the queue

ADT Definition of QUEUE

- **Notation:**
 - \(Q \) queue
 - \(e \) item of same type as the elements of \(Q \)
 - \(b \) boolean value

Operations

- **Init_Que(Q):**
 - Initialize \(Q \) to an empty queue
- **Queue_Empty(Q) \(\rightarrow b \):**
 - Boolean function that returns TRUE is \(Q \) is empty
- **Queue_Full(Q) \(\rightarrow b \):**
 - Boolean function that returns TRUE if \(Q \) is full: array-based implementations
Operations

\textit{EnQueue}(Q, e)
Procedure to place an item \(e\) into \(Q\) at the end (if \(Q\) is not full)

\textit{DeQueue}(Q) \rightarrow e
Procedure to take the first item stored in \(Q\) if \(Q\) is not empty

Problem 1

- \textit{Append_Queue}(Q, P): A procedure to append a queue \(P\) onto the end of a queue \(Q\), leaving \(P\) empty.
 - \textbf{Pre}: queue \(P\) and queue \(Q\), initialized
 - \textbf{Post}: \(Q\) contains all elements originally in \(Q\), followed by the elements that were in \(P\) in same order. \(P\) is empty.
 - Design an algorithm to solve the problem

Problem 2

- \textit{Reverse_Queue}(Q): A procedure to reverse the elements in a queue \(Q\)
 - \textbf{Pre}: queue \(Q\), initialized
 - \textbf{Post}: \(Q\) contains all elements re-written in reverse order

 - Design a non-recursive algorithm using a stack
 - Design a recursive algorithm
 - Find the complexity of the algorithms

Solutions to Problem 2:

A. Non-recursive

\textbf{Init_Stack}(S)
\textbf{While} not \textbf{Queue_Empty}(Q)
 \(e \leftarrow \text{DeQueue}(Q)\) \textbf{Complexity} O(\(N\))
 \textbf{Push}(S, e)
\textbf{While} not \textbf{Stack_Empty}(S)
 \(e \leftarrow \text{Pop}(S)\)
 \textbf{EnQueue}(Q, e)\ N - the number of elements in \(Q\)
Solutions to Problem 2:
B. Recursive

Reverse_Queue(Q):

If not Queue_Empty(Q)
 e ← DeQueue(Q) Complexity O(N)
 Reverse_Queue(Q)
 EnQueue(Q, e)
return

Problem 3

• Append_Reverse_Queue(Q, P): Append a queue P in reverse order onto the end of a queue Q, leaving P empty.
• Pre: P and Q initialized (possibly empty)
• Post: Q contains all elements originally in Q, followed by the elements that were in P in reverse order. P is empty
• Design a recursive algorithm