Hashing

- What is Hashing?
- Direct Access Tables
- Hash Tables

Hashing - Basic Idea
- A mapping between the search keys and indices - efficient searching into an array
- Each element is found with one operation only

Hashing Example
Example:
- 1000 students
 - Identification number between 0 and 999
 - Use an array of 1000 elements.
- SSN of each student a 9-digit number
 - Much more elements than the number of the students - a great waste of space
The Approach

- Directly referencing records in a table using arithmetic operations on keys to map them onto table addresses

- Hash function: Function that transforms the search key into a table address

Direct-Address Tables

- The most elementary form of hashing

- Assumption: Direct one-to-one correspondence between the keys and numbers 0, 1, ..., m-1 (m - not very large)

- Array A[m]: Each position (slot) in the array contains a pointer to a record, or NULL

- Cost: The size of the array we need is determined by the largest key. Not very useful if there are only a few keys

Hash Functions

- Transform the keys into numbers within a predetermined interval to be used as indices in an array (table, hash table) to store the records

Hash Functions - Numerical Keys

- Keys - numbers

- If M is the size of the array, then
 \[h(key) = key \mod M \]

- This will map all the keys into numbers within the interval [0 .. (M-1)]
Hash Functions - Character Keys

- Keys - strings of characters
- Treat the binary representation of a key as a number, and then apply the hash function

How Keys are Treated as Numbers

- If each character is represented with \(m \) bits, then the string can be treated as base-\(m \) number

Example

<table>
<thead>
<tr>
<th>A</th>
<th>K</th>
<th>E</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>01011</td>
<td>00101</td>
<td>11001</td>
</tr>
</tbody>
</table>

\[
1 \cdot 32^3 + 1 \cdot 32^2 + 5 \cdot 32^1 + 25 \cdot 32^0 = 44271
\]

Each letter is represented by its position in the alphabet. E.g., \(K \) is the 11-th letter, and its representation is 01011 (11 in decimal)

Long Keys

- If the keys are very long, an overflow may occur
- A solution to this problem is to apply the Horner’s method in computing the hash function
Horner's Method

\[a_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x + a_0x^0 = \]
\[x \cdot (x \cdot (\ldots (x \cdot (a_nx + a_{n-1}) + a_{n-2}) + \ldots) + a_1) + a_0 \]

\[4x^5 + 2x^4 + 3x^3 + x^2 + 7x + 9 = \]
\[x \cdot (x \cdot (x \cdot (x \cdot (4x + 2) + 3) + 1) + 7) + 9 \]

The polynomial can be computed by alternating the multiplication and addition operations.

Example

VERY LONG KEY

<table>
<thead>
<tr>
<th>0110</th>
<th>0010</th>
<th>1001</th>
<th>0111</th>
<th>0110</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1100</th>
<th>0101</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>E</td>
<td>R</td>
<td>Y</td>
<td>V</td>
<td>E</td>
<td>R</td>
<td>Y</td>
<td>V</td>
<td>E</td>
</tr>
</tbody>
</table>

| 10 | 18 | 25 | 12 | 15 | 14 | 7 | 11 | 5 | 25 |

\[22 \cdot 32^{10} + 5 \cdot 32^9 + 18 \cdot 32^8 + 25 \cdot 32^7 + 12 \cdot 32^6 + 15 \cdot 32^5 + 14 \cdot 32^4 + 7 \cdot 32^3 + 11 \cdot 32^2 + 5 \cdot 32 + 25 \cdot 32^0 \]

Example (cont'd)

VERY LONG KEY

| 22 | 5 | 18 | 25 | 12 | 15 | 14 | 7 | 11 | 5 | 25 |

\[((((((22.32 + 5)32 + 18)32 + 25)32 + 12)32 + 15)32 + 14)32 + 7)32 + 11)32 + 5)32 + 25 \]

Compute the hash function by applying the mod operation at each step, thus avoiding overflowing.

\[h_0 = (22.32 + 5) \mod M \]
\[h_1 = (32h_0 + 18) \mod M \]
\[h_2 = (32h_1 + 25) \mod M \]

Code

```c
int hash32(char[] name, int tbl_size){
    key_length = name.length;
    int h = 0;

    for (int i=0; i<key_length; i++)
        h = (32*h+name[i]) % tbl_size;
    return h;
}
```
Hash Tables

- **Index**: Integer generated by a hash function between 0 and M-1
- Initially, blank slots
 - Sentinel value, or a special field in each slot

Hash Tables

- **Insert**: hash function to generate an address
- **Search**: for a key in the table - the same hash function is used

Size of the Table

- **Table size M**: Different from the number of records N
- **Load factor**: \(\lambda = \frac{N}{M} \)
- **M must be prime** to ensure even distribution of keys

COLLISION RESOLUTION: SEPARATE CHAINING
Collision Resolution

• Collision Resolution
 - Separate Chaining
 - Open Addressing
 • Linear Probing
 • Quadratic Probing
 • Double Hashing
 - Rehashing
• Extendible Hashing

Hash Tables – Collision

• Problem: Many-to-one mapping
• A potentially huge set of strings → a small set of integers

• Collision: Having a second key into a previously used slot

• Collision resolution: Deals with keys that are mapped to same slots

Separate Chaining

• Invented by H. P. Luhn, an IBM engineer, in January 1953

• Idea: Keys hashing to same slot are kept in linked lists attached to that slot

• Useful for highly dynamic situations, where the number of the search keys cannot be predicted in advance

Example

Key: A S E A R C H I N G E X A M P L E
Hash: 1 8 5 1 7 3 8 9 3 7 5 2 1 2 5 1 5
(M = 11)

Separate chaining:

0 1 2 3 4 5 6 7 8 9 10
= L M N = E = G H I =
A X C P R S =
A = = E = =
A = E =
= =
Separate Chaining – Length of Lists

- \(N \) - number of keys
- \(M \) - size of table
- \(N/M \) - average length of the lists

Separate Chaining – Search

- Unsuccessful searches go to the end of some list
- Successful searches are expected to go half the way down some list

Separate Chaining – Choosing Table Size \(M \)

- Relatively small so as not to use up a large area of contiguous memory
- But large enough so that the lists are short for more efficient sequential search

Separate Chaining – Other Chaining Options

- Keep the lists ordered - useful if there are much more searches than inserts, and if most of the searches are unsuccessful
- Represent the chains as binary search tree. Extra effort needed - not efficient
Separate Chaining - Advantages and Disadvantages

- Advantages
 - Used when memory space is a concern
 - Easily implemented

- Disadvantages
 - Unevenly distributed keys - long lists:
 Search time increases, many empty spaces in the table

Collision Resolution:

- Separate Chaining
- Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Rehashing
- Extendible Hashing

Open Addressing

- Invented by A. P. Ershov and W. W. Peterson in 1957, independently

- Idea: Store collisions in the hash table

- Table size: Must be at least twice the number of the records
Open Addressing

If collision occurs, next probes are performed following the formula:

\[h_i(x) = (\text{hash}(x) + f(i)) \mod \text{Table Size} \]

where:
- \(h_i(x) \) is an index in the table to insert \(x \)
- \(\text{hash}(x) \) is the hash function
- \(f(i) \) is the collision resolution function.
- \(i \) is the current attempt to insert an element.

Open Addressing

- Problems with delete: A special flag is needed to distinguish deleted from empty positions.
 \- Necessary for the search function – if we come to a “deleted” position, the search has to continue as the deletion might have been done after the insertion of the sought key.
 \- The sought key might be further in the table.

Linear Probing

- **f(i) = i**

 Insert: If collision - probe the next slot
 - If unoccupied - store the key there
 - If occupied - continue probing next slot

 Search:
 - a) Match – successful search
 - b) Empty position – unsuccessful search
 - c) Occupied and no match – continue probing

 If end of the table - continue from the beginning

Example

Key: `ASEARCHINGEXAMPLE`

Hash: `1 0 5 1 18 3 8 9 14 7 5 1 13 16 12 5`

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
S A E R
C G H I N
* E
* * * * X
* * * A
L M P
* * * * * E
* - unsuccessful attempts
```
Linear Probing

- Disadvantage: “Primary clustering”
- Large clusters tend to build up
- Expected number of probes:
 - For insertions and unsuccessful searches: \(\frac{1}{2}(1+1/(1-\lambda)^2) \)
 - For successful searches: \(\frac{1}{2}(1+1/(1-\lambda)) \)

Quadratic Probing

- Use a quadratic function to compute the next index in the table to be probed
- The idea here is to skip regions in the table with possible clusters

\[f(i) = i^2 \]

Quadratic Probing

- In linear probing we check the \(i^{th} \) position. If it is occupied, we check the \(i+1^{st} \) position, next \(i+2^{nd} \), etc.
- In quadratic probing, if the \(i^{th} \) position is occupied we check the \(i+1^{st} \), next we check \(i+4^{th} \), next \(i+9^{th} \), etc.

Double Hashing

- Purpose: To overcome the disadvantage of clustering
- A second hash function to get a fixed increment for the “probe” sequence
 - \(\text{hash}_2 \) should never evaluate to 0
 - \(\text{hash}_2(x) = R - (x \mod R) \)
 - \(R \): Prime, smaller than table size
Rehashing

- Table size: $M > N$

- For small load factor, the performance is much better than for $\lambda = N/M$ close to one

- Best choice: $\lambda = 0.5$
- When $\lambda > 0.75$ - rehashing

Rehashing

- Build a second table twice as large as the original and rehash there all the keys of the original table

- Expensive operation
 - Running time $O(N)$
 - However, once done, the new hash table will have good performance

Extendible Hashing

- External storage
 - N records in total to store
 - M records in one disk block

- No more than two blocks are examined

Extendible Hashing

Idea:

- Keys are grouped according to the first m bits in their code.

- Each group is stored in one disk block.

- If some block becomes full, each group is split into two, and $m+1$ bits are considered to determine the location of a record
Example

- 4 disk blocks, each can contain 3 records
- 4 groups of keys according to the first two bits

<table>
<thead>
<tr>
<th>directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 01 10 11</td>
</tr>
<tr>
<td>00010 01001 10001 11000</td>
</tr>
<tr>
<td>00100 01010 10100 11010</td>
</tr>
<tr>
<td>01100</td>
</tr>
</tbody>
</table>

Example (cont’d)

- New key to be inserted: 01011
- Block2 is full, so we start considering 3 bits

<table>
<thead>
<tr>
<th>directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(still on same block)</td>
</tr>
<tr>
<td>000/001 010 011 100/101 110/111</td>
</tr>
<tr>
<td>00010 01001 01100 10001 11000</td>
</tr>
<tr>
<td>---- 01010 --- 11010</td>
</tr>
<tr>
<td>00100 01011 10100</td>
</tr>
</tbody>
</table>

Extendible Hashing

Size of the directory: 2^D

$$2^D = \Theta(N^{(1+1/M)} / M)$$

- D - the number of bits considered
- N - number of records
- M - number of disk blocks

Conclusion 1

- Hashing is a search method used when
 - sorting is not needed
 - access time is the primary concern
Conclusion 2

• Time-space trade-off:
 - No memory limitations - Use the key as a memory address (minimum amount of time)
 - No time limitations - Use sequential search (minimum amount of memory)

• Hashing: Gives a balance between these two extremes - a way to use a reasonable amount of both memory and time

Conclusion 3

• To choose a good hash function is an art
• The choice depends on the nature of keys and the distribution of the numbers corresponding to the keys

Conclusion 4

• Best course of action:
 - Separate chaining: If the number of records is not known in advance
 - Open addressing: If the number of the records can be predicted and there is enough memory available