The Model

A priority queue is a queue where:

- Requests are inserted in the order of arrival
- The request with highest priority is processed first (deleted from the queue)
- The priority is indicated by a number. The lower the number - the higher the priority

Implementations

- Linked list:
 - Insert at the beginning - O(1)
 - Find the minimum - O(N)
- Binary search tree (BST):
 - Insert O(logN)
 - Find minimum - O(logN)
Binary Heap

Better than BST because it does not require links
- Insert $O(\log N)$
- Find minimum $O(\log N)$

Deleting the minimal element takes a constant time. However, after that the heap structure has to be adjusted, and this requires $O(\log N)$ time.

Requires that the heap size is (approximately known) in advance.

Next node to be inserted - right child of the yellow node

Binary Heap

Heap-Structure Property:
- Complete Binary Tree - Each node has two children, except for the bottom level, which is filled from left to right
- The nodes at the last level do not have children. New nodes are inserted at the last level from left to right

Heap-Order Property:
- Each node has a higher priority than its children

Binary Heap Implementation with an Array

Root - $A(1)$
- Left Child of $A(i)$ - $A(2i)$
- Right child of $A(i)$ - $A(2i+1)$
- Parent of $A(i)$ - $A(\lfloor i/2 \rfloor)$

The smallest element is always at the root, the access time to the element with highest priority is constant $O(1)$.
Example

Consider 17:
position in the array: 5
parent 10 is at position \(\lfloor 5/2 \rfloor = 2 \)
left child is at position \(5 \times 2 = 10 \) (this is 34)
right child - position \(2 \times 5 + 1 = 11 \) (empty)

Problems

Problem 1:

Problem 2: Give the array representation for

Problems

Basic Operations

- Insert a node - Percolate Up
- Delete a node - Percolate Down
- Decrease key, Increase key, Remove key
- Build the heap
Percolate Up - Insert a Node

A hole is created at the bottom of the tree, in the next available position.

Percolate Up - Insert 16

Insert 16

Percolate Up

Insert 20

Complexity of insertion: $O(\log N)$
Percolate Down - Delete a Node

Percolate Down - The Wrong Way

The empty hole violates the heap-structure property

Percolate Down - The Wrong Way

Percolate Down

Last element - 20. The hole at the root

We try to insert 20 in the hole by percolating the hole down
Complexity of deletion: $O(\log N)$

Other Heap Operations

1. **DecreaseKey(p,d)**
 - Increase the priority of element p in the heap with a positive value d (percolate up)

2. **IncreaseKey(p,d)**
 - Decrease the priority of element p in the heap with a positive value d (percolate down)
Other Heap Operations

3. Remove(p)
 a) Assigning the highest priority to p - percolate p up to the root
 b) Deleting the element in the root and filling the hole by percolating down and trying to insert the last element in the queue

4. BuildHeap
 - Input N elements
 - Place them into an empty heap through successive inserts. The worst case running time is \(O(N \log N) \)

Build Heap - \(O(N) \)

Given an array of elements to be inserted in the heap,
- treat the array as a heap with order property violated,
- and then do operations to fix the order property

Example

150 80 40 30 10 70 110 100 20 90 60
50 120 140 130

After processing height 1
Example (cont’d)

After processing height 2

Example (cont’d)

After processing height 3

Theorem
- For a perfect binary tree of height h containing $N=2^{h+1}-1$ nodes,
 - the sum S of the heights of the nodes is
 \[S = 2^{h+1} - 1 - (h+1) = O(N) \]

Proof
The tree has 1 node at height h, 2 nodes at height $h-1$, 4 nodes at height $h-2$, etc.

\[
\begin{array}{c|c|c}
1 & 2^0 & h \\
2 & 2^1 & h-1 \\
4 & 2^2 & h-2 \\
8 & 2^3 & h-3 \\
\vdots & \vdots & \vdots \\
2^h & 2^h & 0 \\
\end{array}
\]

\[S = \sum 2^i(h-i), \ i=0 \text{ to } h \]
Proof (cont’d)

\[S = h + 2(h-1) + 4(h-2) + 8(h-3) + \ldots + 2^{h-2} \cdot 2^{h-1} \cdot 1 \]
(1)

\[2S = 2h + 4(h-1) + 8(h-2) + 16(h-3) + \ldots + 2^{h-1} \cdot 2^{h} \cdot 1 \]
(2)

Subtract (1) from (2):

\[S = -h + (2 + 4 + 8 + \ldots + 2^{h-1} + 2^{h}) \]
\[= -h + (2^{h+1} - 2) \]
(See the note below)

\[= (-h-1) + (2^{h+1} - 1) \]
\[= (2^{h+1} - 1) - (h+1) \]

Hence the complexity of building a heap with \(N \) nodes is linear \(O(N) \)

Note: \(1 + 2 + 4 + 8 + \ldots \cdot 2^h = (2^{h+1} - 1) \)

Applications of Priority Queues

The Selection Problem

- Given a list of \(N \) elements and an integer \(k \), \(k \leq N \), find the \(k^{th} \) largest element

Solution 1

- Sort the elements in an array
- Return the element in the \(k^{th} \) position

Complexity:

- Simple sorting algorithm \(O(N^2) \)
Solution 2

- Read \(k \) elements in an array, sort them
- Let \(S_k \) be the smallest element
- For each next element \(E \) do the following:
 - If \(E > S_k \)
 - Remove \(S_k \)
 - Insert \(E \) in the appropriate position in the array
- Return \(S_k \)

Solution 2 (cont’d)

- Complexity: \(O(N*k) \)
 - \(k^2 \) for the initial sorting of \(k \) elements
 - \((N-k)*k \) for inserting each next element
 \[O(k^2) + O((N-k)*k) = O(k^2 + N^2k - k^2) = O(N*k) \]
- Worst case: \(k = N/2 \), complexity: \(O(N^2) \)

Solution 3

Assume we change the heap-order property
- the highest priority corresponds to the highest key value.
- Read \(N \) elements in an array
- Build a heap of these \(N \) elements - \(O(N) \)
- Perform \(k \) **DeleteMax** operations - \(O(k \log N) \)

Complexity: \(O(N) + O(k \log N) \)
For \(k=N/2 \) the complexity is \(O(N \log N) \)

Solution 4

We return back to the usual heap-order property
- Build a heap of \(k \) elements. Complexity \(O(k) \)
- The \(k^{th} \) largest element among \(k \) elements is the smallest element in that heap and it will be at the top
- Compare each next element with the top element \(O(1) \)
- If the new element is larger, **DeleteMin** the top element and insert the new element in the heap - \(O(\log(k)) \)
Solution 4 (cont’d)

• At the end of the input the smallest element in the heap is the k^{th} largest element in the list of N elements

Complexity:
• $O(k) + O((N-k) \times \log(k)) = O(N \times \log(k))$

d-Heap

- Insert operation is $O(\log_d n)$
- DeleteMin operation is $O(d \log_d n)$
 - because the minimum of d-children should be found which takes $(d-1)$ comparison.
- For practical applications where the number of insertions is much greater than that of deletions, d-heap design may be performed to speed-up...
- But, both find operation and combining two d-heap are rather difficult compared to binary heap...

Leftist Heaps

- Idea: merging requires copying one array into another, which takes $O(N)$ time for equal-sized heaps...
- Can we do better for mergeable priority queues?
 - Leftist heaps: a special form of binary heaps that attempt to be very unbalanced....
 - Establish a binary tree that is formed on the left path so that insert and merge operations can be easily done at the right path...
 - Playing on the right requires reforming the leftist property...
Null Path Length

- **Null path length, npl(X):** Length of the shortest path from X to a node without two children
- Null path length of a node with 0 or 1 child is 0
- npl(null) is -1

Leftist Heap

- **Remark:** A leftist heap is a tree in which the shortest path to an external node is always on the right
 - i.e., for every node in the heap, the null path length of the left child is AT LEAST as large as that of the right child

Null Path Length

- The one on the left is a leftist heap; the other is not

Leftist Heap

- **Theorem:** Consider a leftist tree T which contains n internal nodes. The path leading from the root of T downwards to the rightmost external node contains at most $\lceil \log(n+1) \rceil$ nodes
Merging Leftist Heaps

• Merge these two heaps
 - Recursively merge the heap with the larger root with the right subheap with the smaller root

Merging Leftist Heaps: Intermediate Step

After merging H_2 with H_1's right subheap

Merging Leftist Heaps: Intermediate Step

After attaching previous figure as H_1's right child

Merging Leftist Heaps: Final Result

After swapping children of H_1's root
Leftist Heap: Complexity

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge</td>
<td>$O(\log n_1 + \log n_2)$</td>
</tr>
<tr>
<td>enqueue</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>dequeue</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>findMin</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>