Building Java Programs

Chapter 4
Lecture 4-1: if and if/else Statements

reading: 4.2
self-check: #4-5, 7, 10, 11
exercises: #7
videos: Ch. 4 #2-4

The if statement

Executes a block of statements only if a test is true

if (test) {
 statement;
 ...
 statement;
}

• Example:
 double gpa = console.nextDouble();
 if (gpa >= 2.0) {
 System.out.println("Application accepted.");
 }

The if/else statement

Executes one block if a test is true, another if false

if (test) {
 statement(s);
} else {
 statement(s);
}

Example:

double gpa = console.nextDouble();
if (gpa >= 2.0) {
 System.out.println("Welcome to Mars University!");
} else {
 System.out.println("Application denied.");
}

Relational expressions

• A test in an if is the same as in a for loop.

for (int i = 1; i <= 10; i++) { ...
 if (i <= 10) { ...

• These are boolean expressions, seen in Ch. 5.

• Tests use relational operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
<th>Example</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>equals</td>
<td>1 + 1 == 2</td>
<td>true</td>
</tr>
<tr>
<td>!=</td>
<td>does not equal</td>
<td>3.2 != 2.5</td>
<td>true</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
<td>10 < 5</td>
<td>false</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
<td>10 > 5</td>
<td>true</td>
</tr>
<tr>
<td><=</td>
<td>less than or equal to</td>
<td>126 <= 100</td>
<td>false</td>
</tr>
<tr>
<td>>=</td>
<td>greater than or equal to</td>
<td>5.0 >= 5.0</td>
<td>true</td>
</tr>
</tbody>
</table>
Logical operators: &&, ||, !

- Conditions can be combined using logical operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>&&</td>
<td>and</td>
<td>$(2 == 3) && (-1 < 5)$</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>or</td>
</tr>
<tr>
<td>!</td>
<td>not</td>
<td>!$(2 == 3)$</td>
<td>true</td>
</tr>
</tbody>
</table>

- "Truth tables" for each, used with logical values p and q:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p & & q$</th>
<th>$p \mid \mid q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

Evaluating logic expressions

- Relational operators have lower precedence than math.

 $5 \times 7 >= 3 + 5 * (7 - 1)$

 $5 \times 7 >= 3 + 5 * 6$

 $35 >= 3 + 30$

 $35 >= 33$

 true

- Relational operators cannot be "chained" as in algebra.

 $2 <= x <= 10$
 (assume that x is 15)

 $true <= 10$
 error!

- Instead, combine multiple tests with && or ||

 $2 <= x && x <= 10$
 (assume that x is 15)

 $true && false$
 false
Logical questions

- What is the result of each of the following expressions?
 - int x = 42;
 - int y = 17;
 - int z = 25;
 - y < x && y <= z
 - x % 2 == y % 2 || x % 2 == z % 2
 - x <= y + z && x >= y + z
 - !(x < y && x < z)
 - (x + y) % 2 == 0 || !(z - y) % 2 == 0

- Answers: true, false, true, true, false

Loops with if/else

- if/else statements can be used with loops or methods:
 - int evenSum = 0;
 - int oddSum = 0;
 - for (int i = 1; i <= 10; i++) {
 - if (i % 2 == 0) {
 - evenSum = evenSum + i;
 - } else {
 - oddSum = oddSum + i;
 - }
 - }
 - System.out.println("Even sum: " + evenSum);
 - System.out.println("Odd sum: " + oddSum);

- Exercise: Write a program that prompts for some various information about a person and uses that information to decide whether to go on a date with them.
Nested if/else

reading: 4.2, 4.5

self-check: #6, 8, 9, 24-27
exercises: #10-14
videos: Ch. 4 #4

Sequential if bug

What's wrong with the following code?

```java
Scanner console = new Scanner(System.in);
System.out.print("What percentage did you earn? ");
int percent = console.nextInt();
if (percent >= 90) {
    System.out.println("You got an A! ");
} else {
    System.out.println("You got an F! ");
}
```
Nested if/else

Chooses between outcomes using many tests

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else {
    statement(s);
}
```

- Example:
  ```java
  if (number > 0) {
      System.out.println("Positive");
  } else if (number < 0) {
      System.out.println("Negative");
  } else {
      System.out.println("Zero");
  }
  ```

Nested if/else/if

- If it ends with `else`, one code path must be taken.
- If it ends with `if`, the program might not execute any path.

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else if (test) {
    statement(s);
}
```

- Example:
  ```java
  if (place == 1) {
      System.out.println("You win the gold medal!");
  } else if (place == 2) {
      System.out.println("You win a silver medal!");
  } else if (place == 3) {
      System.out.println("You earned a bronze medal.");
  }
  ```
Structures

• **Exactly 1 path:** (mutually exclusive)
  ```java
  if (test) {
    statement(s);
  } else if (test) {
    statement(s);
  } else {
    statement(s);
  }
  ```

• **0 or 1 path:**
  ```java
  if (test) {
    statement(s);
  } else if (test) {
    statement(s);
  } else if (test) {
    statement(s);
  }
  ```

• **0, 1, or many paths:** (independent tests, not exclusive)
  ```java
  if (test) {
    statement(s);
  }
  if (test) {
    statement(s);
  }
  if (test) {
    statement(s);
  }
  ```

Which nested \texttt{if/else}?

1. \texttt{if/\texttt{if/\texttt{if}}}
2. \texttt{\textbf{nested if/else}}
3. \texttt{\textbf{nested if/else/\textbf{if}}}

- **Reading the user’s GPA and printing whether the student is on the dean’s list (3.8 to 4.0) or honor roll (3.5 to 3.8).**
 - \textbf{(3)} \textbf{nested if/else/\textbf{if}}
- **Printing whether a number is even or odd.**
 - \textbf{(2)} \textbf{nested if/else/\textbf{if}}
- **Printing whether a user is lower-class, middle-class, or upper-class based on their income.**
 - \textbf{(2)} \textbf{nested if/else/\textbf{if}}
- **Reading a number from the user and printing whether it is divisible by 2, 3, and/or 5.**
 - \textbf{(1)} \textbf{sequential if/\texttt{if/\texttt{if}}}
- **Printing a grade of A, B, C, D, or F based on a percentage.**
 - \textbf{(2)} \textbf{nested if/else/\textbf{if}}
Factoring if/else code

- **factoring:** extracting common/redundant code
 - Factoring if/else code can reduce the size of if/else statements or eliminate the need for if/else altogether.

Example:

```java
if (a == 1) {
  x = 3;
} else if (a == 2) {
  x = 6;
  y++;
} else {  // a == 3
  x = 9;
}
```

```java
x = 3 * a;
if (a == 2) {
  y++;
}
```

Code in need of factoring

```java
if (money < 500) {
  System.out.println("You have, ", money + " left.");
  System.out.println("Caution! Bet carefully.");
  System.out.println("How much do you want to bet? ");
  bet = console.nextInt();
} else if (money < 1000) {
  System.out.println("You have, ", money + " left.");
  System.out.println("Consider betting moderately.");
  System.out.println("How much do you want to bet? ");
  bet = console.nextInt();
} else {
  System.out.println("You have, ", money + " left.");
  System.out.println("You may bet liberally.");
  System.out.println("How much do you want to bet? ");
  bet = console.nextInt();
}
```
Code after factoring

```java
System.out.println("You have, \$" + money + " left.");
if (money < 500) {
    System.out.print("Caution! Bet carefully.");
} else if (money < 1000) {
    System.out.print("Consider betting moderately.");
} else {
    System.out.print("You may bet liberally.");
}
System.out.print("How much do you want to bet? ");
bet = console.nextInt();
```

- If the start of each branch is the same, move it before the if/else.
- If the end of each branch is the same, move it after the if/else.
- If similar but code exists in each branch, look for patterns.

The "dangling if" problem

- What can be improved about the following code?

```java
if (x < 0) {
    System.out.println("x is negative");
} else if (x >= 0) {
    System.out.println("x is non-negative");
}
```

- The second if test is unnecessary and can be removed:

```java
if (x < 0) {
    System.out.println("x is negative");
} else {
    System.out.println("x is non-negative");
}
```

- This is also relevant in methods that use if with return...
Methods can return different values using if/else:

```java
// Returns the largest of the three given integers.
public static int max3(int a, int b, int c) {
    if (a >= b && a >= c) {
        return a;
    } else if (b >= c && b >= a) {
        return b;
    } else {
        return c;
    }
}
```

Whichever path the code enters, it will return the appropriate value.

Returning a value causes a method to immediately exit.

All code paths must reach a return statement.

All paths must also return a value of the same type.

The following also does not compile:

```java
public static int max3(int a, int b, int c) {
    if (a >= b && a >= c) {
        return a;
    } else if (b >= c && b >= a) {
        return b;
    } else if (c >= a && c >= b) {
        return c;
    }
    // Error: not all paths return a value
}
```

The compiler thinks if/else/if code might skip all paths.
if/else question

A person's body mass index (BMI) is defined to be:

\[BMI = \frac{weight}{height^2} \times 703 \]

- Write a program that produces the following output:

This program reads data for two people and computes their body mass index (BMI) and weight status.

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person #1 body mass index = 27.87
overweight
Person #2 body mass index = 23.49
normal
Difference = 4.38

<table>
<thead>
<tr>
<th>BMI</th>
<th>Weight class</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 18.5</td>
<td>underweight</td>
</tr>
<tr>
<td>18.5 - 24.9</td>
<td>normal</td>
</tr>
<tr>
<td>25.0 - 29.9</td>
<td>overweight</td>
</tr>
<tr>
<td>30.0 and up</td>
<td>obese</td>
</tr>
</tbody>
</table>

if/else answer

```java
// This program computes two people's body mass index (BMI)
// and compares them. The code uses parameters and returns.

import java.util.*; // so that I can use Scanner

public class BMI {
    public static void main(String[] args) {
        introduction();
        Scanner console = new Scanner(System.in);
        double bmi1 = person(console);
        double bmi2 = person(console);
        // report overall results
        report(1, bmi1);
        report(2, bmi2);
        System.out.printf("Difference = %.2f\n", Math.abs(bmi1 - bmi2));
    }

    // prints a welcome message explaining the program
    public static void introduction() {
        System.out.println("This program reads data for two people");
        System.out.println("and computes their body mass index (BMI)\n");
        System.out.println("and weight status.\n");
        System.out.println();
    }

    // computes the body mass index for one person
    public static double person(Scanner console) {
        System.out.println("Enter next person's information:\nheight (in inches)?");
        double height = console.nextDouble();
        System.out.println("weight (in pounds)?");
        double weight = console.nextDouble();
        return Math.round((weight / Math.pow(height, 2)) * 703);  // fix here
    }

    // reports results
    public static void report(int personNum, double bmi) {
        if (bmi < 18.5) System.out.println(personNum + " underweight");
        else if (bmi >= 18.5 && bmi < 25.0) System.out.println(personNum + " normal");
        else if (bmi >= 25.0 && bmi < 30.0) System.out.println(personNum + " overweight");
        else System.out.println(personNum + " obese");
    }
}
```

bye
if/else, return question

• Write a method `countFactors` that returns the number of factors of an integer.

 `countFactors(24)` returns 8 because
 1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24.

• Write a program that prompts the user for a maximum integer and prints all prime numbers up to that max.

 Maximum number? 52
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
 15 primes (28.84%)
```java
if/else, return answer 1
...
// Prompts for a maximum number and prints each prime up to that maximum.
import java.util.*;
public class Primes {
    public static void main(String[] args) {
        // read max from user
        Scanner console = new Scanner(System.in);
        System.out.print("Maximum number? ");
        int max = console.nextInt();
        printPrimes(max);
    }
    // Prints all prime numbers up to the given maximum.
    public static void printPrimes(int max) {
        int primes = 0;
        for (int i = 2; i <= max; i++) {
            if (countFactors(i) == 2) { // i is prime
                System.out.print(i + " ");
                primes++;
            }
        }
        System.out.println();
        double percent = 100.0 * primes / max;
        System.out.printf("%d primes (%.2f%%)\n", primes, percent);
    }
    // Returns how many factors the given number has.
    public static int countFactors(int number) {
        int count = 0;
        for (int i = 1; i <= number; i++) {
            if (number % i == 0) {
                count++;
            } // i is a factor of number
        }
        return count;
    }
}
```